Free Access
Med Sci (Paris)
Volume 31, Number 4, Avril 2015
Page(s) 397 - 403
Section M/S Revues
Published online 08 May 2015
  1. Luquet S, Magnan C. The central nervous system at the core of the regulation of energy homeostasis. Front Biosci (Schol Ed) 2009 ; 1 : 448–465. [CrossRef] [PubMed] [Google Scholar]
  2. Blouet C, Schwartz GJ. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 2010 ; 209 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  3. Oomura Y, Nakamura T, Sugimori M, Yamada Y. Effect of free fatty acid on the rat lateral hypothalamic neurons. Physiol Behav 1975 ; 14 : 483–486. [CrossRef] [PubMed] [Google Scholar]
  4. Migrenne S, Le Foll C, Levin BE, Magnan C. Brain lipid sensing and nervous control of energy balance. Diabetes Metab 2011 ; 37 : 83–88. [CrossRef] [PubMed] [Google Scholar]
  5. Edmond J. Essential polyunsaturated fatty acids and the barrier to the brain: the components of a model for transport. J Mol Neurosci 2001; 16 : 181–193; discussion 215–21. [Google Scholar]
  6. Le Foll C, Dunn-Meynell A, Musatov S, et al. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes 2013 ; 62 : 2709–2716. [CrossRef] [PubMed] [Google Scholar]
  7. Le Foll C, Irani BG, Magnan C, et al. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol 2009 ; 297 : R655–R664. [CrossRef] [PubMed] [Google Scholar]
  8. Rapoport SI, Chang MC, Spector AA. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 2001 ; 42 : 678–685. [PubMed] [Google Scholar]
  9. Picard A, Rouch C, Kassis N, et al. Hippocampal lipoprotein lipase regulates energy balance in rodents. Mol Metab 2013 ; 3 : 167–176. [CrossRef] [PubMed] [Google Scholar]
  10. Wang H, Astarita G, Taussig MD, et al. Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. Cell Metab 2011 ; 13 : 105–113. [CrossRef] [PubMed] [Google Scholar]
  11. Wang H, Eckel RH. What are lipoproteins doing in the brain? Trends Endocrinol Metab 2014 ; 25 : 8–14. [CrossRef] [PubMed] [Google Scholar]
  12. Cansell C, Castel J, Denis RG, et al. Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Mol Psychiatry 2014 ; 19 : 1095–1105. [CrossRef] [PubMed] [Google Scholar]
  13. Picard A, Moulle VS, Le Foll C, et al. Physiological and pathophysiological implications of lipid sensing in the brain. Diabetes Obes Metab 2014 ; 16 : suppl 1 49–55. [Google Scholar]
  14. Obici S, Feng Z, Morgan K, et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002 ; 51 : 271–275. [CrossRef] [PubMed] [Google Scholar]
  15. Obici S, Feng Z, Arduini A, et al. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med 2003 ; 9 : 756–761. [CrossRef] [PubMed] [Google Scholar]
  16. Ross RA, Rossetti L, Lam TK, Schwartz GJ. Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production. Am J Physiol Endocrinol Metab 2010 ; 299 : E633–E639. [CrossRef] [PubMed] [Google Scholar]
  17. Magnan C, Collins S, Berthault MF, et al. Lipid infusion lowers sympathetic nervous activity and leads to increased beta-cell responsiveness to glucose. J Clin Invest 1999 ; 103 : 413–419. [CrossRef] [PubMed] [Google Scholar]
  18. Magnan C, Cruciani C, Clement L, et al. Glucose-induced insulin hypersecretion in lipid-infused healthy subjects is associated with a decrease in plasma norepinephrine concentration and urinary excretion. J Clin Endocrinol Metab 2001 ; 86 : 4901–4907. [CrossRef] [PubMed] [Google Scholar]
  19. Cruciani-Guglielmacci C, Hervalet A, Douared L, et al. Beta oxidation in the brain is required for the effects of non-esterified fatty acids on glucose-induced insulin secretion in rats. Diabetologia 2004 ; 47 : 2032–2038. [CrossRef] [PubMed] [Google Scholar]
  20. Ruge T, Hodson L, Cheeseman J, et al. Fasted to fed trafficking of fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. J Clin Endocrinol Metab 2009 ; 94 : 1781–1788. [CrossRef] [PubMed] [Google Scholar]
  21. Tewari KP, Malinowska DH, Sherry AM, Cuppoletti J. PKA and arachidonic acid activation of human recombinant ClC-2 chloride channels. Am J Physiol Cell Physiol 2000 ; 279 : C40–C50. [PubMed] [Google Scholar]
  22. Honen BN, Saint DA, Laver DR. Suppression of calcium sparks in rat ventricular myocytes and direct inhibition of sheep cardiac RyR channels by EPA, DHA and oleic acid. J Membr Biol 2003 ; 196 : 95–103. [CrossRef] [PubMed] [Google Scholar]
  23. Oishi K, Zheng B, Kuo JF. Inhibition of Na, K-ATPase and sodium pump by protein kinase C regulators sphingosine, lysophosphatidylcholine, and oleic acid. J Biol Chem 1990 ; 265 : 70–75. [PubMed] [Google Scholar]
  24. Jo YH, Su Y, Gutierrez-Juarez R, Chua S, Jr. Oleic acid directly regulates POMC neuron excitability in the hypothalamus. J Neurophysiol 2009 ; 101 : 2305–2316. [CrossRef] [PubMed] [Google Scholar]
  25. Wang R, Cruciani-Guglielmacci C, Migrenne S, et al. Effects of oleic acid on distinct populations of neurons in the hypothalamic arcuate nucleus are dependent on extracellular glucose levels. J Neurophysiol 2006 ; 95 : 1491–1498. [CrossRef] [PubMed] [Google Scholar]
  26. Migrenne S, Cruciani-Guglielmacci C, Kang L, et al. Fatty acid signaling in the hypothalamus and the neural control of insulin secretion. Diabetes 2006 ; 55 : S2 S139–S144. [CrossRef] [Google Scholar]
  27. Lane MD, Wolfgang M, Cha SH, Dai Y. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA. Int J Obes (Lond) 2008 ; 32 : suppl 4 S49–S54. [CrossRef] [Google Scholar]
  28. Proulx K, Cota D, Woods SC, Seeley RJ. Fatty acid synthase inhibitors modulate energy balance via mammalian target of rapamycin complex 1 signaling in the central nervous system. Diabetes 2008 ; 57 : 3231–3238. [CrossRef] [PubMed] [Google Scholar]
  29. Proulx K, Seeley RJ. The regulation of energy balance by the central nervous system. Psychiatr Clin North Am 2005; 28 : 25–38, vii. [CrossRef] [PubMed] [Google Scholar]
  30. Tu Y, Thupari JN, Kim EK, et al. C75 alters central and peripheral gene expression to reduce food intake and increase energy expenditure. Endocrinology 2005 ; 146 : 486–493. [CrossRef] [PubMed] [Google Scholar]
  31. Aja S, Landree LE, Kleman AM, et al. Pharmacological stimulation of brain carnitine palmitoyl-transferase-1 decreases food intake and body weight. Am J Physiol Regul Integr Comp Physiol 2008 ; 294 : R352–R361. [CrossRef] [PubMed] [Google Scholar]
  32. Blazquez C, Sanchez C, Daza A, et al. The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme. J Neurochem 1999 ; 72 : 1759–1768. [CrossRef] [PubMed] [Google Scholar]
  33. Benani A, Troy S, Carmona MC, et al. Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Diabetes 2007 ; 56 : 152–160. [CrossRef] [PubMed] [Google Scholar]
  34. Gaillard D, Laugerette F, Darcel N, et al. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J 2008 ; 22 : 1458–1468. [CrossRef] [PubMed] [Google Scholar]
  35. Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999 ; 1451 : 1–16. [CrossRef] [PubMed] [Google Scholar]
  36. Benoit SC, Kemp CJ, Elias CF, et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 2009 ; 119 : 2577–2589. [CrossRef] [PubMed] [Google Scholar]
  37. Benani A, Hryhorczuk C, Gouaze A, et al. Food intake adaptation to dietary fat involves PSA-dependent rewiring of the arcuate melanocortin system in mice. J Neurosci 2012 ; 32 : 11970–11979. [CrossRef] [PubMed] [Google Scholar]
  38. Ramos EJ, Romanova IV, Suzuki S, et al. Effects of omega-3 fatty acids on orexigenic and anorexigenic modulators at the onset of anorexia. Brain Res 2005 ; 1046 : 157–164. [CrossRef] [PubMed] [Google Scholar]
  39. Le Stunff H, Coant N, Migrenne S, Magnan C. Targeting lipid sensing in the central nervous system: new therapy against the development of obesity and type 2 diabetes. Expert Opin Ther Targets 2013 ; 17 : 545–555. [CrossRef] [PubMed] [Google Scholar]
  40. Velloso LA, Schwartz MW. Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond) 2011 ; 35 : 1455–1465. [Google Scholar]
  41. Clement L, Cruciani-Guglielmacci C, Magnan C, et al. Intracerebroventricular infusion of a triglyceride emulsion leads to both altered insulin secretion and hepatic glucose production in rats. Pflugers Arch 2002 ; 445 : 375–380. [CrossRef] [PubMed] [Google Scholar]
  42. Levin BE, Triscari J, Sullivan AC. Altered sympathetic activity during development of diet-induced obesity in rat. Am J Physiol 1983 ; 244 : R347–R355. [PubMed] [Google Scholar]
  43. Cintra DE, Ropelle ER, Moraes JC, et al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One 2012 ; 7 : e30571. [Google Scholar]
  44. Karmi A, Iozzo P, Viljanen A, et al. Increased brain fatty acid uptake in metabolic syndrome. Diabetes 2010 ; 59 : 2171–2177. [CrossRef] [PubMed] [Google Scholar]
  45. Contreras C, Lopez M. Ceramide sensing in the hippocampus: the lipostatic theory and Ockham’s razor. Mol Metab 2014 ; 3 : 90–91. [CrossRef] [PubMed] [Google Scholar]
  46. Elmquist JK, Marcus JN. Rethinking the central causes of diabetes. Nat Med 2003 ; 9 : 645–647. [CrossRef] [PubMed] [Google Scholar]
  47. De Vadder F, Mithieux G. Contrôle de la glycémie par l’axe nerveux intestin-cerveau. Med Sci (Paris) 2015 ; 31 : 168–173. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.