Accès gratuit
Med Sci (Paris)
Volume 31, Numéro 4, Avril 2015
Page(s) 397 - 403
Section M/S Revues
Publié en ligne 8 mai 2015
  1. Luquet S, Magnan C. The central nervous system at the core of the regulation of energy homeostasis. Front Biosci (Schol Ed) 2009 ; 1 : 448–465. [CrossRef] [PubMed]
  2. Blouet C, Schwartz GJ. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 2010 ; 209 : 1–12. [CrossRef] [PubMed]
  3. Oomura Y, Nakamura T, Sugimori M, Yamada Y. Effect of free fatty acid on the rat lateral hypothalamic neurons. Physiol Behav 1975 ; 14 : 483–486. [CrossRef] [PubMed]
  4. Migrenne S, Le Foll C, Levin BE, Magnan C. Brain lipid sensing and nervous control of energy balance. Diabetes Metab 2011 ; 37 : 83–88. [CrossRef] [PubMed]
  5. Edmond J. Essential polyunsaturated fatty acids and the barrier to the brain: the components of a model for transport. J Mol Neurosci 2001; 16 : 181–193; discussion 215–21. [CrossRef] [PubMed]
  6. Le Foll C, Dunn-Meynell A, Musatov S, et al. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes 2013 ; 62 : 2709–2716. [CrossRef] [PubMed]
  7. Le Foll C, Irani BG, Magnan C, et al. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol 2009 ; 297 : R655–R664. [CrossRef] [PubMed]
  8. Rapoport SI, Chang MC, Spector AA. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 2001 ; 42 : 678–685. [PubMed]
  9. Picard A, Rouch C, Kassis N, et al. Hippocampal lipoprotein lipase regulates energy balance in rodents. Mol Metab 2013 ; 3 : 167–176. [CrossRef] [PubMed]
  10. Wang H, Astarita G, Taussig MD, et al. Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. Cell Metab 2011 ; 13 : 105–113. [CrossRef] [PubMed]
  11. Wang H, Eckel RH. What are lipoproteins doing in the brain? Trends Endocrinol Metab 2014 ; 25 : 8–14. [CrossRef] [PubMed]
  12. Cansell C, Castel J, Denis RG, et al. Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Mol Psychiatry 2014 ; 19 : 1095–1105. [CrossRef] [PubMed]
  13. Picard A, Moulle VS, Le Foll C, et al. Physiological and pathophysiological implications of lipid sensing in the brain. Diabetes Obes Metab 2014 ; 16 : suppl 1 49–55. [CrossRef] [PubMed]
  14. Obici S, Feng Z, Morgan K, et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002 ; 51 : 271–275. [CrossRef] [PubMed]
  15. Obici S, Feng Z, Arduini A, et al. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med 2003 ; 9 : 756–761. [CrossRef] [PubMed]
  16. Ross RA, Rossetti L, Lam TK, Schwartz GJ. Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production. Am J Physiol Endocrinol Metab 2010 ; 299 : E633–E639. [CrossRef] [PubMed]
  17. Magnan C, Collins S, Berthault MF, et al. Lipid infusion lowers sympathetic nervous activity and leads to increased beta-cell responsiveness to glucose. J Clin Invest 1999 ; 103 : 413–419. [CrossRef] [PubMed]
  18. Magnan C, Cruciani C, Clement L, et al. Glucose-induced insulin hypersecretion in lipid-infused healthy subjects is associated with a decrease in plasma norepinephrine concentration and urinary excretion. J Clin Endocrinol Metab 2001 ; 86 : 4901–4907. [CrossRef] [PubMed]
  19. Cruciani-Guglielmacci C, Hervalet A, Douared L, et al. Beta oxidation in the brain is required for the effects of non-esterified fatty acids on glucose-induced insulin secretion in rats. Diabetologia 2004 ; 47 : 2032–2038. [CrossRef] [PubMed]
  20. Ruge T, Hodson L, Cheeseman J, et al. Fasted to fed trafficking of fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. J Clin Endocrinol Metab 2009 ; 94 : 1781–1788. [CrossRef] [PubMed]
  21. Tewari KP, Malinowska DH, Sherry AM, Cuppoletti J. PKA and arachidonic acid activation of human recombinant ClC-2 chloride channels. Am J Physiol Cell Physiol 2000 ; 279 : C40–C50. [PubMed]
  22. Honen BN, Saint DA, Laver DR. Suppression of calcium sparks in rat ventricular myocytes and direct inhibition of sheep cardiac RyR channels by EPA, DHA and oleic acid. J Membr Biol 2003 ; 196 : 95–103. [CrossRef] [PubMed]
  23. Oishi K, Zheng B, Kuo JF. Inhibition of Na, K-ATPase and sodium pump by protein kinase C regulators sphingosine, lysophosphatidylcholine, and oleic acid. J Biol Chem 1990 ; 265 : 70–75. [PubMed]
  24. Jo YH, Su Y, Gutierrez-Juarez R, Chua S, Jr. Oleic acid directly regulates POMC neuron excitability in the hypothalamus. J Neurophysiol 2009 ; 101 : 2305–2316. [CrossRef] [PubMed]
  25. Wang R, Cruciani-Guglielmacci C, Migrenne S, et al. Effects of oleic acid on distinct populations of neurons in the hypothalamic arcuate nucleus are dependent on extracellular glucose levels. J Neurophysiol 2006 ; 95 : 1491–1498. [CrossRef] [PubMed]
  26. Migrenne S, Cruciani-Guglielmacci C, Kang L, et al. Fatty acid signaling in the hypothalamus and the neural control of insulin secretion. Diabetes 2006 ; 55 : S2 S139–S144. [CrossRef]
  27. Lane MD, Wolfgang M, Cha SH, Dai Y. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA. Int J Obes (Lond) 2008 ; 32 : suppl 4 S49–S54. [CrossRef]
  28. Proulx K, Cota D, Woods SC, Seeley RJ. Fatty acid synthase inhibitors modulate energy balance via mammalian target of rapamycin complex 1 signaling in the central nervous system. Diabetes 2008 ; 57 : 3231–3238. [CrossRef] [PubMed]
  29. Proulx K, Seeley RJ. The regulation of energy balance by the central nervous system. Psychiatr Clin North Am 2005; 28 : 25–38, vii. [CrossRef] [PubMed]
  30. Tu Y, Thupari JN, Kim EK, et al. C75 alters central and peripheral gene expression to reduce food intake and increase energy expenditure. Endocrinology 2005 ; 146 : 486–493. [CrossRef] [PubMed]
  31. Aja S, Landree LE, Kleman AM, et al. Pharmacological stimulation of brain carnitine palmitoyl-transferase-1 decreases food intake and body weight. Am J Physiol Regul Integr Comp Physiol 2008 ; 294 : R352–R361. [CrossRef] [PubMed]
  32. Blazquez C, Sanchez C, Daza A, et al. The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme. J Neurochem 1999 ; 72 : 1759–1768. [CrossRef] [PubMed]
  33. Benani A, Troy S, Carmona MC, et al. Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Diabetes 2007 ; 56 : 152–160. [CrossRef] [PubMed]
  34. Gaillard D, Laugerette F, Darcel N, et al. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J 2008 ; 22 : 1458–1468. [CrossRef] [PubMed]
  35. Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999 ; 1451 : 1–16. [CrossRef] [PubMed]
  36. Benoit SC, Kemp CJ, Elias CF, et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 2009 ; 119 : 2577–2589. [CrossRef] [PubMed]
  37. Benani A, Hryhorczuk C, Gouaze A, et al. Food intake adaptation to dietary fat involves PSA-dependent rewiring of the arcuate melanocortin system in mice. J Neurosci 2012 ; 32 : 11970–11979. [CrossRef] [PubMed]
  38. Ramos EJ, Romanova IV, Suzuki S, et al. Effects of omega-3 fatty acids on orexigenic and anorexigenic modulators at the onset of anorexia. Brain Res 2005 ; 1046 : 157–164. [CrossRef] [PubMed]
  39. Le Stunff H, Coant N, Migrenne S, Magnan C. Targeting lipid sensing in the central nervous system: new therapy against the development of obesity and type 2 diabetes. Expert Opin Ther Targets 2013 ; 17 : 545–555. [CrossRef] [PubMed]
  40. Velloso LA, Schwartz MW. Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond) 2011 ; 35 : 1455–1465. [CrossRef] [PubMed]
  41. Clement L, Cruciani-Guglielmacci C, Magnan C, et al. Intracerebroventricular infusion of a triglyceride emulsion leads to both altered insulin secretion and hepatic glucose production in rats. Pflugers Arch 2002 ; 445 : 375–380. [CrossRef] [PubMed]
  42. Levin BE, Triscari J, Sullivan AC. Altered sympathetic activity during development of diet-induced obesity in rat. Am J Physiol 1983 ; 244 : R347–R355. [PubMed]
  43. Cintra DE, Ropelle ER, Moraes JC, et al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One 2012 ; 7 : e30571. [CrossRef] [PubMed]
  44. Karmi A, Iozzo P, Viljanen A, et al. Increased brain fatty acid uptake in metabolic syndrome. Diabetes 2010 ; 59 : 2171–2177. [CrossRef] [PubMed]
  45. Contreras C, Lopez M. Ceramide sensing in the hippocampus: the lipostatic theory and Ockham’s razor. Mol Metab 2014 ; 3 : 90–91. [CrossRef] [PubMed]
  46. Elmquist JK, Marcus JN. Rethinking the central causes of diabetes. Nat Med 2003 ; 9 : 645–647. [CrossRef] [PubMed]
  47. De Vadder F, Mithieux G. Contrôle de la glycémie par l’axe nerveux intestin-cerveau. Med Sci (Paris) 2015 ; 31 : 168–173. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.