Free Access
Issue
Med Sci (Paris)
Volume 31, Number 3, Mars 2015
Page(s) 268 - 274
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153103012
Published online 08 April 2015
  1. Ono R, Taki T, Taketani T, et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 2002 ; 62 : 4075–4080. [PubMed] [Google Scholar]
  2. Hu L, Li Z, Cheng J, et al. Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 2013 ; 155 : 1545–1555. [CrossRef] [PubMed] [Google Scholar]
  3. Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009 ; 324 : 930–935. [CrossRef] [PubMed] [Google Scholar]
  4. Guo JU, Su Y, Zhong C, et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011 ; 145 : 423–434. [CrossRef] [PubMed] [Google Scholar]
  5. Cortellino S, Xu J, Sannai M, et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011 ; 146 : 67–79. [CrossRef] [PubMed] [Google Scholar]
  6. Morera S, Grin I, Vigouroux A, et al. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Nucleic Acids Res 2012 ; 40 : 9917–9926. [CrossRef] [PubMed] [Google Scholar]
  7. Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 2014 ; 156 : 45–68. [CrossRef] [PubMed] [Google Scholar]
  8. Pfaffeneder T, Spada F, Wagner M, et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol 2014 ; 10 : 574–581. [CrossRef] [PubMed] [Google Scholar]
  9. Williams K, Christensen J, Pedersen MT, et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 2011 ; 473 : 343–348. [CrossRef] [PubMed] [Google Scholar]
  10. Huang Y, Chavez L, Chang X, et al. Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc Natl Acad Sci USA 2014 ; 111 : 1361–1366. [CrossRef] [Google Scholar]
  11. Pulakanti K, Pinello L, Stelloh C, et al. Enhancer transcribed RNAs arise from hypomethylated. Tet-occupied genomic regions. Epigenetics 2013 ; 8 : 1303–1320. [Google Scholar]
  12. Pronier E, Almire C, Mokrani H, et al. Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulo-monocytic differentiation of human hematopoietic progenitors. Blood 2011 ; 118 : 2551–2555. [CrossRef] [PubMed] [Google Scholar]
  13. Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 2013 ; 14 : 341–356. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. Lafaye C, Barbier E, Miscioscia A, et al. DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation. Biochem Biophys Res Commun 2014 ; 446 : 341–346. [CrossRef] [PubMed] [Google Scholar]
  15. Delatte B. L’interaction TET-OGT facilite la transcription en régulant la méthylation de l’histone H. Med Sci (Paris) 2014 ; 30 : 619–621. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Song SJ, Ito K, Ala U, et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 2013 ; 13 : 87–101. [CrossRef] [PubMed] [Google Scholar]
  17. Ko M, An J, Bandukwala HS, et al. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 2013 ; 497 : 122–126. [CrossRef] [PubMed] [Google Scholar]
  18. Arioka Y, Watanabe A, Saito K, et al. Activation-induced cytidine deaminase alters the subcellular localization of Tet family proteins. PLoS One 2012 ; 7 : e45031. [CrossRef] [PubMed] [Google Scholar]
  19. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010 ; 18 : 553–567. [CrossRef] [PubMed] [Google Scholar]
  20. Blaschke K, Ebata KT, Karimi MM, et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 2013 ; 500 : 222–226. [CrossRef] [PubMed] [Google Scholar]
  21. Dawlaty MM, Ganz K, Powell BE, et al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 2011 ; 9 : 166–175. [CrossRef] [PubMed] [Google Scholar]
  22. Quivoron C, Couronne L, Della Valle V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011 ; 20 : 25–38. [CrossRef] [PubMed] [Google Scholar]
  23. Gu TP, Guo F, Yang H, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 2011 ; 477 : 606–610. [CrossRef] [PubMed] [Google Scholar]
  24. Dawlaty MM, Breiling A, Le T, et al. Combined deficiency of tet1 and tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 2013 ; 24 : 310–323. [CrossRef] [PubMed] [Google Scholar]
  25. Dawlaty MM, Breiling A, Le T, et al. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell 2014 ; 29 : 102–111. [CrossRef] [PubMed] [Google Scholar]
  26. Langlois T, da Costa Reis Monte Mor B, Lenglet G, et al. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells. Stem Cells 2014 ; 32 : 2084–2097. [CrossRef] [PubMed] [Google Scholar]
  27. Jackson SA, Sridharan R. The nexus of Tet1 and the pluripotency network. Cell Stem Cell 2013 ; 12 : 387–388. [CrossRef] [PubMed] [Google Scholar]
  28. Wang T, Wu H, Li Y, et al. Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency. Nat Cell Biol 2013 ; 15 : 700–711. [CrossRef] [PubMed] [Google Scholar]
  29. Gao Y, Chen J, Li K, et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 2013 ; 12 : 453–469. [CrossRef] [PubMed] [Google Scholar]
  30. Kallin EM, Rodriguez-Ubreva J, Christensen J, et al. Tet2 facilitates the derepression of myeloid target genes during CEBPalpha-induced transdifferentiation of pre-B cells. Mol Cell 2012 ; 48 : 266–276. [CrossRef] [PubMed] [Google Scholar]
  31. Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009 ; 360 : 2289–2301. [CrossRef] [PubMed] [Google Scholar]
  32. Cimmino L, Abdel-Wahab O, Levine RL, et al. TET family proteins and their role in stem cell differentiation and transformation. Cell Stem Cell 2011 ; 9 : 193–204. [CrossRef] [PubMed] [Google Scholar]
  33. Pedrazzini T. Le cœur des ARN non codants : un long chemin à découvrir. Med Sci (Paris) 2015 ; 31 : 261–267. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.