Free Access
Issue
Med Sci (Paris)
Volume 31, Number 3, Mars 2015
Page(s) 261 - 267
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153103011
Published online 08 April 2015
  1. Mattick JS. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 2003 ; 25 : 930–939. [CrossRef] [PubMed] [Google Scholar]
  2. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol 2011 ; 21 : 354–361. [CrossRef] [PubMed] [Google Scholar]
  3. Lee JT. Epigenetic regulation by long noncoding RNAs. Science 2012 ; 338 : 1435–1439. [CrossRef] [PubMed] [Google Scholar]
  4. Hu W, Alvarez-Dominguez JR, Lodish HF. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 2012 ; 13 : 971–983. [CrossRef] [PubMed] [Google Scholar]
  5. Orom UA, Shiekhattar R. Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 2013 ; 154 : 1190–1193. [CrossRef] [PubMed] [Google Scholar]
  6. Preker P, Nielsen J, Kammler S, et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 2008 ; 322 : 1851–1854. [CrossRef] [PubMed] [Google Scholar]
  7. Sigova AA, Mullen AC, Molinie B, et al. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc Natl Acad Sci USA 2013 ; 110 : 2876–2881. [CrossRef] [Google Scholar]
  8. Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007 ; 129 : 1311–1323. [CrossRef] [PubMed] [Google Scholar]
  9. Kotake Y, Nakagawa T, Kitagawa K, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 2011 ; 30 : 1956–1962. [CrossRef] [PubMed] [Google Scholar]
  10. Kino T, Hurt DE, Ichijo T, et al. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 2010; 3 : ra8. [PubMed] [Google Scholar]
  11. Zong X, Tripathi V, Prasanth KV. RNA splicing control: yet another gene regulatory role for long nuclear noncoding RNAs. RNA Biol 2011 ; 8 : 968–977. [CrossRef] [PubMed] [Google Scholar]
  12. Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell 2011 ; 146 : 353–358. [CrossRef] [PubMed] [Google Scholar]
  13. Orom UA, Derrien T, Beringer M, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 2010 ; 143 : 46–58. [CrossRef] [PubMed] [Google Scholar]
  14. Lam MT, Li W, Rosenfeld MG, Glass CK. Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 2014 ; 39 : 170–182. [CrossRef] [PubMed] [Google Scholar]
  15. Xie W, Ren B. Developmental biology. Enhancing pluripotency and lineage specification. Science 2013 ; 341 : 245–247. [Google Scholar]
  16. Kim TK, Hemberg M, Gray JM, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 2010 ; 465 : 182–187. [CrossRef] [PubMed] [Google Scholar]
  17. Heintzman ND, Hon GC, Hawkins RD, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009 ; 459 : 108–112. [CrossRef] [PubMed] [Google Scholar]
  18. Kaikkonen MU, Spann NJ, Heinz S, et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 2013 ; 51 : 310–325. [CrossRef] [PubMed] [Google Scholar]
  19. Lin YC, Benner C, Mansson R, et al. Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol 2012 ; 13 : 1196–1204. [CrossRef] [PubMed] [Google Scholar]
  20. Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene promoters. Nature 2012 ; 489 : 109–113. [CrossRef] [PubMed] [Google Scholar]
  21. Zhang Y, Wong CH, Birnbaum RY, et al. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 2013 ; 504 : 306–310. [CrossRef] [PubMed] [Google Scholar]
  22. Li W, Notani D, Ma Q, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 2013 ; 498 : 516–520. [CrossRef] [PubMed] [Google Scholar]
  23. Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012 ; 337 : 1190–1195. [CrossRef] [PubMed] [Google Scholar]
  24. Vernot B, Stergachis AB, Maurano MT, et al. Personal and population genomics of human regulatory variation. Genome Res 2012 ; 22 : 1689–1697. [CrossRef] [PubMed] [Google Scholar]
  25. Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell 2013 ; 155 : 934–947. [CrossRef] [PubMed] [Google Scholar]
  26. Klattenhoff CA, Scheuermann JC, Surface LE, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013 ; 152 : 570–583. [CrossRef] [PubMed] [Google Scholar]
  27. Grote P, Wittler L, Hendrix D, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 2013 ; 24 : 206–214. [CrossRef] [PubMed] [Google Scholar]
  28. Korostowski L, Sedlak N, Engel N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet 2012 ; 8 : e1002956. [CrossRef] [PubMed] [Google Scholar]
  29. Wang K, Liu F, Zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 2014 ; 114 : 1377–1388. [CrossRef] [PubMed] [Google Scholar]
  30. Han P, Li W, Lin CH, et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 2014 ; doi : 10.1038/nature13596 [Google Scholar]
  31. Yang KC, Yamada KA, Patel AY, et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 2014 ; 129 : 1009–1021. [CrossRef] [PubMed] [Google Scholar]
  32. Kumarswamy R, Bauters C, Volkmann I, et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 2014 ; 114 : 1569–1575. [CrossRef] [PubMed] [Google Scholar]
  33. Ounzain S, Micheletti R, Beckmann T, et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J 2014 ; doi : 10.1093/eurheartj/ehu180 [Google Scholar]
  34. Ounzain S, Pezzuto I, Micheletti R, et al. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease. J Mol Cell Cardiol 2014; 76C : 55–70. [CrossRef] [Google Scholar]
  35. Matkovich SJ, Edwards JR, Grossenheider TC, et al. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci USA 2014 ; 111 : 12264–12269. [CrossRef] [Google Scholar]
  36. Zangrando J, Zhang L, Vausort M, et al. Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics 2014 ; 15 : 460. [CrossRef] [PubMed] [Google Scholar]
  37. Vausort M, Wagner DR, Devaux Y. Long non-coding RNAs in patients with acute myocardial infarction. Circ Res 2014 ; 115 : 668–677. [CrossRef] [PubMed] [Google Scholar]
  38. Wamstad JA, Wang X, Demuren OO, Boyer LA. Distal enhancers: new insights into heart development and disease. Trends Cell Biol 2014 ; 24 : 294–302. [CrossRef] [PubMed] [Google Scholar]
  39. Abel Y, Clerget G, Bourguignon-Igel V, et al. Les petits ARN nucléolaires nous surprennent encore !. Med Sci (Paris) 2014 ; 30 : 297–302. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Mathieu EL, Belhocine M, Dao LTM, et al. Rôle des longs ARN non codants dans le développement normal et pathologique. Med Sci (Paris) 2014 ; 30 : 790–796. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Pasmant E, Laurendeau I, Sabbagh B, et al. ANRIL ou l’étrange histoire d’un grand ARN non codant. Med Sci (Paris) 2010 ; 26 : 564–566. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.