Free Access
Med Sci (Paris)
Volume 31, Number 2, Février 2015
Page(s) 143 - 150
Section M/S Revues
Published online 04 March 2015
  1. Kuhn JH, Bao Y, Bavari S, et al. Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Arch Virol 2013 ; 158 : 1425–1432. [CrossRef] [PubMed] [Google Scholar]
  2. Sanchez A, Kiley MP, Holloway BP, Auperin DD. Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res 1993 ; 29 : 215–240. [CrossRef] [PubMed] [Google Scholar]
  3. Volchkov VE, Volchkova VA, Muhlberger E, et al. Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 2001 ; 291 : 1965–1969. [CrossRef] [PubMed] [Google Scholar]
  4. Reid SP, Leung LW, Hartman AL, et al. Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 2006 ; 80 : 5156–5167. [CrossRef] [PubMed] [Google Scholar]
  5. Valmas C, Grosch MN, Schumann M, et al. Marburg virus evades interferon responses by a mechanism distinct from Ebola virus. PLoS Pathog 2010 ; 6 : e1000721. [CrossRef] [PubMed] [Google Scholar]
  6. Page A, Volchkova VA, Reid SP, et al. Marburgvirus hijacks nrf2-dependent pathway by targeting nrf2-negative regulator keap1. Cell Rep 2014 ; 6 : 1026–1036. [CrossRef] [PubMed] [Google Scholar]
  7. Rouquet P, Froment JM, Bermejo M, et al. Wild animal mortality monitoring and human Ebola outbreaks, Gabon and Republic of Congo, 2001–2003. Emerg Infect Dis 2005 ; 11 : 283–290. [CrossRef] [PubMed] [Google Scholar]
  8. Swanepoel R, Leman PA, Burt FJ, et al. Experimental inoculation of plants and animals with Ebola virus. Emerg Infect Dis 1996 ; 2 : 321–325. [CrossRef] [PubMed] [Google Scholar]
  9. Leroy EM, Kumulungui B, Pourrut X, et al. Fruit bats as reservoirs of Ebola virus. Nature 2005 ; 438 : 575–576. [CrossRef] [PubMed] [Google Scholar]
  10. Towner JS, Amman BR, Sealy TK, et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 2009 ; 5 : e1000536. [CrossRef] [PubMed] [Google Scholar]
  11. Negredo A, Palacios G, Vazquez-Moron S, et al. Discovery of an Ebola virus-like filovirus in europe. PLoS Pathog 2011 ; 7 : e1002304. [CrossRef] [PubMed] [Google Scholar]
  12. Geisbert TW, Hensley LE. Ebola virus: new insights into disease aetiopathology and possible therapeutic interventions. Expert Rev Mol Med 2004; 6 : 1–24. [CrossRef] [Google Scholar]
  13. Peters CJ, LeDuc JW. An introduction to Ebola: the virus and the disease. J Infect Dis 1999; 179 (suppl 1) : ix–xvi. [CrossRef] [PubMed] [Google Scholar]
  14. Baize S, Pannetier D, Oestereich L, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 2014 ; 371 : 1418–1425. [CrossRef] [PubMed] [Google Scholar]
  15. Aleksandrowicz P, Wolf K, Falzarano D, et al. Viral haemorrhagic fever and vascular alterations. Hamostaseologie 2008 ; 28 : 77–84. [PubMed] [Google Scholar]
  16. Baize S, Leroy EM, Georges AJ, et al. Inflammatory responses in Ebola virus-infected patients. Clin Exp Immunol 2002 ; 128 : 163–168. [CrossRef] [PubMed] [Google Scholar]
  17. Baize S, Leroy EM, Mavoungou E, Fisher-Hoch SP. Apoptosis in fatal Ebola infection. Does the virus toll the bell for immune system? Apoptosis 2000 ; 5 : 5–7. [CrossRef] [PubMed] [Google Scholar]
  18. Leroy EM, Baize S, Volchkov VE, et al. Human asymptomatic Ebola infection and strong inflammatory response. Lancet 2000 ; 355 : 2210–2215. [CrossRef] [PubMed] [Google Scholar]
  19. Geisbert TW, Hensley LE, Larsen T, et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 2003 ; 163 : 2347–2370. [CrossRef] [PubMed] [Google Scholar]
  20. Geisbert TW, Young HA, Jahrling PB, et al. Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am J Pathol 2003 ; 163 : 2371–2382. [CrossRef] [PubMed] [Google Scholar]
  21. Mahanty S, Bray M. Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect Dis 2004 ; 4 : 487–498. [CrossRef] [PubMed] [Google Scholar]
  22. Kortepeter MG, Bausch DG, Bray M. Basic clinical and laboratory features of filoviral hemorrhagic fever. J Infect Dis 2011 ; 204 : suppl 3 S810–S816. [CrossRef] [PubMed] [Google Scholar]
  23. Perry DL, Bollinger L, White GL. The baboon (Papio spp.) as a model of human Ebola virus infection. Viruses 2012; 4 : 2400–2416. [CrossRef] [PubMed] [Google Scholar]
  24. Zaki SR, Goldsmith CS. Pathologic features of filovirus infections in humans. Curr Top Microbiol Immunol 1999 ; 235 : 97–116. [PubMed] [Google Scholar]
  25. Zampieri CA, Sullivan NJ, Nabel GJ. Immunopathology of highly virulent pathogens: insights from Ebola virus. Nat immunol 2007 ; 8 : 1159–1164. [CrossRef] [PubMed] [Google Scholar]
  26. Wahl-Jensen VM, Afanasieva TA, Seebach J, et al. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol 2005 ; 79 : 10442–10450. [CrossRef] [PubMed] [Google Scholar]
  27. Baize S, Leroy EM, Georges-Courbot MC, et al. Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 1999 ; 5 : 423–426. [CrossRef] [PubMed] [Google Scholar]
  28. Hoenen T, Groseth A, Falzarano D, Feldmann H. Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends Mol Med 2006 ; 12 : 206–215. [CrossRef] [PubMed] [Google Scholar]
  29. Reynard OJ, Jacquot F, Volchkov V. L’infection à virus Ebola et les modèles animaux associés. Rev Fr Histotechnol 2012 ; 25 : 67–82. [Google Scholar]
  30. Geisbert TW, Young HA, Jahrling PB, et al. Mechanisms underlying coagulation abnormalities in Ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis 2003 ; 188 : 1618–1629. [CrossRef] [PubMed] [Google Scholar]
  31. Camerer E, Kolsto AB, Prydz H. Cell biology of tissue factor, the principal initiator of blood coagulation. Thromb Res 1996 ; 81 : 1–41. [CrossRef] [PubMed] [Google Scholar]
  32. Ernofsson M, Siegbahn A. Platelet-derived growth factor-BB and monocyte chemotactic protein-1 induce human peripheral blood monocytes to express tissue factor. Thromb Res 1996 ; 83 : 307–320. [CrossRef] [PubMed] [Google Scholar]
  33. Chen VM, Hogg PJ. Encryption and decryption of tissue factor. J Thromb Haemost 2013 ; 11 : suppl 1 277–284. [CrossRef] [PubMed] [Google Scholar]
  34. Rao LV, Pendurthi UR. Tissue factor-factor VIIa signaling. Arterioscler Thromb Vasc Biol 2005 ; 25 : 47–56. [PubMed] [Google Scholar]
  35. Geisbert TW, Hensley LE, Jahrling PB, et al. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 2003 ; 362 : 1953–1958. [CrossRef] [PubMed] [Google Scholar]
  36. Hensley LE, StevensEL Yan SB, et al. Recombinant human activated protein C for the postexposure treatment of Ebola hemorrhagic fever. J Infect Dis 2007 ; 196 suppl 2 : S390–S399. [CrossRef] [PubMed] [Google Scholar]
  37. McElroy AK, Erickson BR, Flietstra TD, et al. Ebola hemorrhagic fever: novel biomarker correlates of clinical outcome. J Infect Dis 2014 ; 210 : 558–566. [CrossRef] [PubMed] [Google Scholar]
  38. Arata AA, Johnson B, Approaches towards studies on potential reservoirs of viral haemorrhagic fever in southern Sudan (1977). In : Pattyn SR, ed. Proceedings of an international colloquium on Ebola virus infection and other haemorrhagic fevers held in Antwerp, Belgium, 6–8 December, 1977. Amsterdam : Elsevier, 1978 : 136–142. [Google Scholar]
  39. Leroy EM, Baize S, Debre P, et al. Early immune responses accompanying human asymptomatic Ebola infections. Clin Exp Immunol 2001 ; 124 : 453–460. [CrossRef] [PubMed] [Google Scholar]
  40. Villinger F, Rollin PE, Brar SS, et al. Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J Infect Dis 1999 ; 179 suppl 1 : S188–S191. [CrossRef] [PubMed] [Google Scholar]
  41. Gupta M, Mahanty S, Ahmed R, Rollin PE. Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with Ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro. Virology 2001 ; 284 : 20–25. [CrossRef] [PubMed] [Google Scholar]
  42. Ignatiev GM, Dadaeva AA, Luchko SV, Chepurnov AA. Immune and pathophysiological processes in baboons experimentally infected with Ebola virus adapted to guinea pigs. Immunol Lett 2000 ; 71 : 131–140. [CrossRef] [PubMed] [Google Scholar]
  43. Bosio CM, Moore BD, Warfield KL, et al. Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology 2004 ; 326 : 280–287. [CrossRef] [PubMed] [Google Scholar]
  44. Ye L, Lin J, Sun Y, et al. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies. Virology 2006 ; 351 : 260–270. [CrossRef] [PubMed] [Google Scholar]
  45. Jansen PM, Boermeester MA, Fischer E, et al. Contribution of interleukin-1 to activation of coagulation and fibrinolysis, neutrophil degranulation, and the release of secretory-type phospholipase A2 in sepsis: studies in nonhuman primates after interleukin-1 alpha administration and during lethal bacteremia. Blood 1995 ; 86 : 1027–1034. [PubMed] [Google Scholar]
  46. Stouthard JM, Levi M, Hack CE, et al. Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb Haemost 1996 ; 76 : 738–742. [PubMed] [Google Scholar]
  47. Sanchez A, Lukwiya M, Bausch D, et al. Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J Virol 2004 ; 78 : 10370–10377. [CrossRef] [PubMed] [Google Scholar]
  48. Tousoulis D, Kampoli AM, Tentolouris C, et al. The role of nitric oxide on endothelial function. Curr Vascular Pharmacol 2012 ; 10 : 4–18. [CrossRef] [Google Scholar]
  49. Martinez O, Valmas C, Basler CF. Ebola virus-like particle-induced activation of NF-kappaB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology 2007 ; 364 : 342–354. [CrossRef] [PubMed] [Google Scholar]
  50. Escudero-Perez B, Volchkova VA, Dolnik O, et al. Shed GP of Ebola virus triggers immune activation and increased vascular permeability. PLoS Pathog 2014 ; 10 : e1004509. [CrossRef] [PubMed] [Google Scholar]
  51. Brudner M, Karpel M, Lear C, et al. Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors. PLoS One 2013 ; 8 : e60838. [CrossRef] [PubMed] [Google Scholar]
  52. Krarup A, Wallis R, Presanis JS, et al. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One 2007 ; 2 : e623. [CrossRef] [PubMed] [Google Scholar]
  53. Mayilyan KR, Presanis JS, Arnold JN, et al. Heterogeneity of MBL-MASP complexes. Mol Immunol 2006 ; 43 : 1286–1292. [CrossRef] [PubMed] [Google Scholar]
  54. Castro JE, Vado-Solis I, Perez-Osorio C, Fredeking TM. Modulation of cytokine and cytokine receptor/antagonist by treatment with doxycycline and tetracycline in patients with dengue fever. Clin Dev Immunol 2011 ; 2011 : 370872. [PubMed] [Google Scholar]
  55. Salgado D, Zabaleta TE, Hatch S, et al. Use of pentoxifylline in treatment of children with dengue hemorrhagic fever. Pediatr Infect Dis J 2012 ; 31 : 771–773. [CrossRef] [PubMed] [Google Scholar]
  56. Kerbiriou-Nabias D.. Les polyphosphates : nouveaux acteurs plaquettaires qui associent thrombose et inflammation. Med Sci (Paris) 2010 ; 26 : 343–346. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  57. Borgel D, Vieillard-Baron A. La protéine C activée. Med Sci (Paris) 2011 ; 27 : 501–507. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.