Accès gratuit
Numéro |
Med Sci (Paris)
Volume 31, Numéro 2, Février 2015
|
|
---|---|---|
Page(s) | 143 - 150 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20153102010 | |
Publié en ligne | 4 mars 2015 |
- Kuhn JH, Bao Y, Bavari S, et al. Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Arch Virol 2013 ; 158 : 1425–1432. [CrossRef] [PubMed] [Google Scholar]
- Sanchez A, Kiley MP, Holloway BP, Auperin DD. Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res 1993 ; 29 : 215–240. [CrossRef] [PubMed] [Google Scholar]
- Volchkov VE, Volchkova VA, Muhlberger E, et al. Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 2001 ; 291 : 1965–1969. [CrossRef] [PubMed] [Google Scholar]
- Reid SP, Leung LW, Hartman AL, et al. Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 2006 ; 80 : 5156–5167. [CrossRef] [PubMed] [Google Scholar]
- Valmas C, Grosch MN, Schumann M, et al. Marburg virus evades interferon responses by a mechanism distinct from Ebola virus. PLoS Pathog 2010 ; 6 : e1000721. [CrossRef] [PubMed] [Google Scholar]
- Page A, Volchkova VA, Reid SP, et al. Marburgvirus hijacks nrf2-dependent pathway by targeting nrf2-negative regulator keap1. Cell Rep 2014 ; 6 : 1026–1036. [CrossRef] [PubMed] [Google Scholar]
- Rouquet P, Froment JM, Bermejo M, et al. Wild animal mortality monitoring and human Ebola outbreaks, Gabon and Republic of Congo, 2001–2003. Emerg Infect Dis 2005 ; 11 : 283–290. [CrossRef] [PubMed] [Google Scholar]
- Swanepoel R, Leman PA, Burt FJ, et al. Experimental inoculation of plants and animals with Ebola virus. Emerg Infect Dis 1996 ; 2 : 321–325. [CrossRef] [PubMed] [Google Scholar]
- Leroy EM, Kumulungui B, Pourrut X, et al. Fruit bats as reservoirs of Ebola virus. Nature 2005 ; 438 : 575–576. [CrossRef] [PubMed] [Google Scholar]
- Towner JS, Amman BR, Sealy TK, et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 2009 ; 5 : e1000536. [CrossRef] [PubMed] [Google Scholar]
- Negredo A, Palacios G, Vazquez-Moron S, et al. Discovery of an Ebola virus-like filovirus in europe. PLoS Pathog 2011 ; 7 : e1002304. [CrossRef] [PubMed] [Google Scholar]
- Geisbert TW, Hensley LE. Ebola virus: new insights into disease aetiopathology and possible therapeutic interventions. Expert Rev Mol Med 2004; 6 : 1–24. [CrossRef] [Google Scholar]
- Peters CJ, LeDuc JW. An introduction to Ebola: the virus and the disease. J Infect Dis 1999; 179 (suppl 1) : ix–xvi. [CrossRef] [PubMed] [Google Scholar]
- Baize S, Pannetier D, Oestereich L, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 2014 ; 371 : 1418–1425. [CrossRef] [PubMed] [Google Scholar]
- Aleksandrowicz P, Wolf K, Falzarano D, et al. Viral haemorrhagic fever and vascular alterations. Hamostaseologie 2008 ; 28 : 77–84. [PubMed] [Google Scholar]
- Baize S, Leroy EM, Georges AJ, et al. Inflammatory responses in Ebola virus-infected patients. Clin Exp Immunol 2002 ; 128 : 163–168. [CrossRef] [PubMed] [Google Scholar]
- Baize S, Leroy EM, Mavoungou E, Fisher-Hoch SP. Apoptosis in fatal Ebola infection. Does the virus toll the bell for immune system? Apoptosis 2000 ; 5 : 5–7. [CrossRef] [PubMed] [Google Scholar]
- Leroy EM, Baize S, Volchkov VE, et al. Human asymptomatic Ebola infection and strong inflammatory response. Lancet 2000 ; 355 : 2210–2215. [CrossRef] [PubMed] [Google Scholar]
- Geisbert TW, Hensley LE, Larsen T, et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 2003 ; 163 : 2347–2370. [CrossRef] [PubMed] [Google Scholar]
- Geisbert TW, Young HA, Jahrling PB, et al. Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am J Pathol 2003 ; 163 : 2371–2382. [CrossRef] [PubMed] [Google Scholar]
- Mahanty S, Bray M. Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect Dis 2004 ; 4 : 487–498. [CrossRef] [PubMed] [Google Scholar]
- Kortepeter MG, Bausch DG, Bray M. Basic clinical and laboratory features of filoviral hemorrhagic fever. J Infect Dis 2011 ; 204 : suppl 3 S810–S816. [CrossRef] [PubMed] [Google Scholar]
- Perry DL, Bollinger L, White GL. The baboon (Papio spp.) as a model of human Ebola virus infection. Viruses 2012; 4 : 2400–2416. [CrossRef] [PubMed] [Google Scholar]
- Zaki SR, Goldsmith CS. Pathologic features of filovirus infections in humans. Curr Top Microbiol Immunol 1999 ; 235 : 97–116. [PubMed] [Google Scholar]
- Zampieri CA, Sullivan NJ, Nabel GJ. Immunopathology of highly virulent pathogens: insights from Ebola virus. Nat immunol 2007 ; 8 : 1159–1164. [CrossRef] [PubMed] [Google Scholar]
- Wahl-Jensen VM, Afanasieva TA, Seebach J, et al. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol 2005 ; 79 : 10442–10450. [CrossRef] [PubMed] [Google Scholar]
- Baize S, Leroy EM, Georges-Courbot MC, et al. Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 1999 ; 5 : 423–426. [CrossRef] [PubMed] [Google Scholar]
- Hoenen T, Groseth A, Falzarano D, Feldmann H. Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends Mol Med 2006 ; 12 : 206–215. [CrossRef] [PubMed] [Google Scholar]
- Reynard OJ, Jacquot F, Volchkov V. L’infection à virus Ebola et les modèles animaux associés. Rev Fr Histotechnol 2012 ; 25 : 67–82. [Google Scholar]
- Geisbert TW, Young HA, Jahrling PB, et al. Mechanisms underlying coagulation abnormalities in Ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis 2003 ; 188 : 1618–1629. [CrossRef] [PubMed] [Google Scholar]
- Camerer E, Kolsto AB, Prydz H. Cell biology of tissue factor, the principal initiator of blood coagulation. Thromb Res 1996 ; 81 : 1–41. [CrossRef] [PubMed] [Google Scholar]
- Ernofsson M, Siegbahn A. Platelet-derived growth factor-BB and monocyte chemotactic protein-1 induce human peripheral blood monocytes to express tissue factor. Thromb Res 1996 ; 83 : 307–320. [CrossRef] [PubMed] [Google Scholar]
- Chen VM, Hogg PJ. Encryption and decryption of tissue factor. J Thromb Haemost 2013 ; 11 : suppl 1 277–284. [CrossRef] [PubMed] [Google Scholar]
- Rao LV, Pendurthi UR. Tissue factor-factor VIIa signaling. Arterioscler Thromb Vasc Biol 2005 ; 25 : 47–56. [PubMed] [Google Scholar]
- Geisbert TW, Hensley LE, Jahrling PB, et al. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 2003 ; 362 : 1953–1958. [CrossRef] [PubMed] [Google Scholar]
- Hensley LE, StevensEL Yan SB, et al. Recombinant human activated protein C for the postexposure treatment of Ebola hemorrhagic fever. J Infect Dis 2007 ; 196 suppl 2 : S390–S399. [CrossRef] [PubMed] [Google Scholar]
- McElroy AK, Erickson BR, Flietstra TD, et al. Ebola hemorrhagic fever: novel biomarker correlates of clinical outcome. J Infect Dis 2014 ; 210 : 558–566. [CrossRef] [PubMed] [Google Scholar]
- Arata AA, Johnson B, Approaches towards studies on potential reservoirs of viral haemorrhagic fever in southern Sudan (1977). In : Pattyn SR, ed. Proceedings of an international colloquium on Ebola virus infection and other haemorrhagic fevers held in Antwerp, Belgium, 6–8 December, 1977. Amsterdam : Elsevier, 1978 : 136–142. [Google Scholar]
- Leroy EM, Baize S, Debre P, et al. Early immune responses accompanying human asymptomatic Ebola infections. Clin Exp Immunol 2001 ; 124 : 453–460. [CrossRef] [PubMed] [Google Scholar]
- Villinger F, Rollin PE, Brar SS, et al. Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J Infect Dis 1999 ; 179 suppl 1 : S188–S191. [CrossRef] [PubMed] [Google Scholar]
- Gupta M, Mahanty S, Ahmed R, Rollin PE. Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with Ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro. Virology 2001 ; 284 : 20–25. [CrossRef] [PubMed] [Google Scholar]
- Ignatiev GM, Dadaeva AA, Luchko SV, Chepurnov AA. Immune and pathophysiological processes in baboons experimentally infected with Ebola virus adapted to guinea pigs. Immunol Lett 2000 ; 71 : 131–140. [CrossRef] [PubMed] [Google Scholar]
- Bosio CM, Moore BD, Warfield KL, et al. Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology 2004 ; 326 : 280–287. [CrossRef] [PubMed] [Google Scholar]
- Ye L, Lin J, Sun Y, et al. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies. Virology 2006 ; 351 : 260–270. [CrossRef] [PubMed] [Google Scholar]
- Jansen PM, Boermeester MA, Fischer E, et al. Contribution of interleukin-1 to activation of coagulation and fibrinolysis, neutrophil degranulation, and the release of secretory-type phospholipase A2 in sepsis: studies in nonhuman primates after interleukin-1 alpha administration and during lethal bacteremia. Blood 1995 ; 86 : 1027–1034. [PubMed] [Google Scholar]
- Stouthard JM, Levi M, Hack CE, et al. Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb Haemost 1996 ; 76 : 738–742. [PubMed] [Google Scholar]
- Sanchez A, Lukwiya M, Bausch D, et al. Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J Virol 2004 ; 78 : 10370–10377. [CrossRef] [PubMed] [Google Scholar]
- Tousoulis D, Kampoli AM, Tentolouris C, et al. The role of nitric oxide on endothelial function. Curr Vascular Pharmacol 2012 ; 10 : 4–18. [CrossRef] [Google Scholar]
- Martinez O, Valmas C, Basler CF. Ebola virus-like particle-induced activation of NF-kappaB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology 2007 ; 364 : 342–354. [CrossRef] [PubMed] [Google Scholar]
- Escudero-Perez B, Volchkova VA, Dolnik O, et al. Shed GP of Ebola virus triggers immune activation and increased vascular permeability. PLoS Pathog 2014 ; 10 : e1004509. [CrossRef] [PubMed] [Google Scholar]
- Brudner M, Karpel M, Lear C, et al. Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors. PLoS One 2013 ; 8 : e60838. [CrossRef] [PubMed] [Google Scholar]
- Krarup A, Wallis R, Presanis JS, et al. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One 2007 ; 2 : e623. [CrossRef] [PubMed] [Google Scholar]
- Mayilyan KR, Presanis JS, Arnold JN, et al. Heterogeneity of MBL-MASP complexes. Mol Immunol 2006 ; 43 : 1286–1292. [CrossRef] [PubMed] [Google Scholar]
- Castro JE, Vado-Solis I, Perez-Osorio C, Fredeking TM. Modulation of cytokine and cytokine receptor/antagonist by treatment with doxycycline and tetracycline in patients with dengue fever. Clin Dev Immunol 2011 ; 2011 : 370872. [PubMed] [Google Scholar]
- Salgado D, Zabaleta TE, Hatch S, et al. Use of pentoxifylline in treatment of children with dengue hemorrhagic fever. Pediatr Infect Dis J 2012 ; 31 : 771–773. [CrossRef] [PubMed] [Google Scholar]
- Kerbiriou-Nabias D.. Les polyphosphates : nouveaux acteurs plaquettaires qui associent thrombose et inflammation. Med Sci (Paris) 2010 ; 26 : 343–346. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Borgel D, Vieillard-Baron A. La protéine C activée. Med Sci (Paris) 2011 ; 27 : 501–507. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.