Free Access
Med Sci (Paris)
Volume 31, Number 1, Janvier 2015
Page(s) 43 - 52
Section M/S Revues
Published online 06 February 2015
  1. Segal AW, Jones OT. Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 1978 ; 276 : 515–517. [CrossRef] [PubMed] [Google Scholar]
  2. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007 ; 87 : 245–313. [CrossRef] [PubMed] [Google Scholar]
  3. Morel F. Molecular aspects of chronic granulomatous disease. The NADPH oxidase complex. Bull Acad Natl Med 2007; 191 : 377–390; discussion 90–2. [PubMed] [Google Scholar]
  4. Bedard K, Lardy B, Krause KH. NOX family NADPH oxidases: not just in mammals. Biochimie 2007 ; 89 : 1107–1112. [CrossRef] [PubMed] [Google Scholar]
  5. Kawahara T, Quinn MT, Lambeth JD. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 2007 ; 7 : 109. [CrossRef] [PubMed] [Google Scholar]
  6. Lardy B, Bof M, Aubry L, et al. NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. Biochim Biophys Acta 2005 ; 1744 : 199–212. [CrossRef] [PubMed] [Google Scholar]
  7. Goyal P, Weissmann N, Rose F, et al. Identification of novel Nox4 splice variants with impact on ROS levels in A549 cells. Biochem Biophys Res Commun 2005 ; 329 : 32–39. [CrossRef] [PubMed] [Google Scholar]
  8. Bedard K, Jaquet V, Krause KH. NOX5: from basic biology to signaling and disease. Free Radic Biol Med 2012 ; 52 : 725–734. [CrossRef] [PubMed] [Google Scholar]
  9. Chen F, Haigh S, Barman S, Fulton DJ. From form to function: the role of Nox4 in the cardiovascular system. Front Physiol 2012 ; 3 : 412. [PubMed] [Google Scholar]
  10. Lassegue B. San Martin A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012 ; 110 : 1364–1390. [CrossRef] [PubMed] [Google Scholar]
  11. Zhang L, Nguyen MV, Lardy B, et al. New insight into the Nox4 subcellular localization in HEK293 cells: first monoclonal antibodies against Nox4. Biochimie 2011 ; 93 : 457–468. [CrossRef] [PubMed] [Google Scholar]
  12. Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 2002 ; 59 : 1428–1459. [CrossRef] [PubMed] [Google Scholar]
  13. Sumimoto H.. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. Febs J 2008 ; 275 : 3249–3277. [CrossRef] [PubMed] [Google Scholar]
  14. Takac I, Schroder K, Zhang L, et al. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 2011 ; 286 : 13304–13313. [CrossRef] [PubMed] [Google Scholar]
  15. Jackson HM, Kawahara T, Nisimoto Y, et al. Nox4 B-loop creates an interface between the transmembrane and dehydrogenase domains. J Biol Chem 2010 ; 285 : 10281–10290. [CrossRef] [PubMed] [Google Scholar]
  16. De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox signal 2014 ; 20 : 2776–2793. [CrossRef] [PubMed] [Google Scholar]
  17. Morel F, Vignais PV. Examination of the oxidase function of the b-type cytochrome in human polymorphonuclear leucocytes. Biochim Biophys Acta 1984 ; 764 : 213–225. [CrossRef] [PubMed] [Google Scholar]
  18. Kawahara T, Jackson HM, Smith SM, et al. Nox5 forms a functional oligomer mediated by self-association of its dehydrogenase domain. Biochemistry 2011 ; 50 : 2013–2025. [CrossRef] [PubMed] [Google Scholar]
  19. Nguyen MV, Lardy B, Rousset F, et al. Quinone compounds regulate the level of ROS production by the NADPH oxidase Nox4. Biochem Pharmacol 2013 ; 85 : 1644–1654. [CrossRef] [PubMed] [Google Scholar]
  20. Baillet A, Xu R, Grichine A, et al. Coupling of 6-phosphogluconate dehydrogenase with NADPH oxidase in neutrophils: Nox2 activity regulation by NADPH availability. Faseb J 2011 ; 25 : 2333–2343. [CrossRef] [PubMed] [Google Scholar]
  21. Pick E. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: Outsourcing a key task. Small GTPases 2014; 5. [Google Scholar]
  22. Boussetta T, Gougerot-Pocidalo MA, Hayem G, et al. The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alpha-induced priming of the NADPH oxidase in human neutrophils. Blood 2010 ; 116 : 5795–5802. [CrossRef] [PubMed] [Google Scholar]
  23. Paclet MH, Coleman AW, Vergnaud S, Morel F. P67-phox-mediated NADPH oxidase assembly: imaging of cytochrome b558 liposomes by atomic force microscopy. Biochemistry 2000 ; 39 : 9302–9310. [CrossRef] [PubMed] [Google Scholar]
  24. Berthier S, Paclet MH, Lerouge S, et al. Changing the conformation state of cytochrome b558 initiates NADPH oxidase activation: MRP8/MRP14 regulation. J Biol Chem 2003 ; 278 : 25499–25508. [CrossRef] [PubMed] [Google Scholar]
  25. Campion Y, Jesaitis AJ, Nguyen MV, et al. New p22-phox monoclonal antibodies: identification of a conformational probe for cytochrome b 558. J Innate Immun 2009 ; 1 : 556–569. [CrossRef] [PubMed] [Google Scholar]
  26. Campion Y, Paclet MH, Jesaitis AJ, et al. New insights into the membrane topology of the phagocyte NADPH oxidase: characterization of an anti-gp91-phox conformational monoclonal antibody. Biochimie 2007 ; 89 : 1145–1158. [CrossRef] [PubMed] [Google Scholar]
  27. Berthier S, Nguyen MV, Baillet A, et al. Molecular interface of S100A8 with cytochrome b558 and NADPH oxidase activation. PLoS One 2012 ; 7 : e40277. [CrossRef] [PubMed] [Google Scholar]
  28. Debbabi M, Kroviarski Y, Bournier O, et al. NOXO1 phosphorylation on serine 154 is critical for optimal NADPH oxidase 1 assembly and activation. Faseb J 2013 ; 27 : 1733–1748. [CrossRef] [PubMed] [Google Scholar]
  29. Gianni D, DerMardirossian C, Bokoch GM. Direct interaction between Tks proteins and the N-terminal proline-rich region (PRR) of NoxA1 mediates Nox1-dependent ROS generation. Eur J Cell Biol 2011 ; 90 : 164–171. [CrossRef] [PubMed] [Google Scholar]
  30. Serrander L, Cartier L, Bedard K, et al. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 2007 ; 406 : 105–114. [CrossRef] [PubMed] [Google Scholar]
  31. Nguyen MV, Zhang L, Lhomme S, et al. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity. Biochem Biophys Res Commun 2012 ; 419 : 453–458. [CrossRef] [PubMed] [Google Scholar]
  32. Nisimoto Y, Jackson HM, Ogawa H, et al. Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain. Biochemistry 2010 ; 49 : 2433–2442. [CrossRef] [PubMed] [Google Scholar]
  33. von Lohneysen K, Noack D, Hayes P, et al. Constitutive NADPH oxidase 4 activity resides in the composition of the B-loop and the penultimate C terminus. J Biol Chem 2012 ; 287 : 8737–8745. [CrossRef] [PubMed] [Google Scholar]
  34. Lyle AN, Deshpande NN, Taniyama Y, et al. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 2009 ; 105 : 249–259. [CrossRef] [PubMed] [Google Scholar]
  35. Altenhofer S, Radermacher KA, Kleikers PW, et al. Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 2014, sous presse. [Google Scholar]
  36. Rousset F, Nguyen MV, Grange L, et al. Heme oxygenase-1 regulates matrix metalloproteinase MMP-1 secretion and chondrocyte cell death via Nox4 NADPH oxidase activity in chondrocytes. PLoS One 2013 ; 8 : e66478. [CrossRef] [PubMed] [Google Scholar]
  37. Grange L, Nguyen MV, Lardy B, et al. NAD(P)H oxidase activity of Nox4 in chondrocytes is both inducible and involved in collagenase expression. Antioxid Redox Signal 2006 ; 8 : 1485–1496. [CrossRef] [PubMed] [Google Scholar]
  38. Tirone F, Radu L, Craescu CT, Cox JA. Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5. Biochemistry 2010 ; 49 : 761–771. [CrossRef] [PubMed] [Google Scholar]
  39. Morel F, Boulay F, Doussière J, et al. Bases moléculaires de la granulomatose septique chronique. Med Sci (Paris) 1992 ; 8 : 912–920. [CrossRef] [Google Scholar]
  40. Stasia MJ, Li XJ. Genetics and immunopathology of chronic granulomatous disease. Semin Immunopathol 2008 ; 30 : 209–235. [CrossRef] [PubMed] [Google Scholar]
  41. Banfi B, Malgrange B, Knisz J, et al. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 2004 ; 279 : 46065–46072. [CrossRef] [PubMed] [Google Scholar]
  42. Cifuentes-Pagano E, Meijles DN, Pagano PJ. The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls. Antioxid Redox Signal 2014 ; 20 : 2741–2754. [CrossRef] [PubMed] [Google Scholar]
  43. Krause KH, Lambeth D, Kronke M. NOX enzymes as drug targets. Cell Mol Life Sci 2012 ; 69 : 2279–2282. [CrossRef] [PubMed] [Google Scholar]
  44. Cross AR, Segal AW. The NADPH oxidase of professional phagocytes-prototype of the NOX electron transport chain systems. Biochim Biophys Acta 2004 ; 1657 : 1–22. [CrossRef] [Google Scholar]
  45. Marsolier J, Weitzman J. Pin1: une peptidyl-prolyl cis-trans isomérase multifonctionnelle et une cible anticancéreuse prometteuse. Med Sci (Paris) 2014 ; 30 : 772–778. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Stasia MJ. La granulomatose septique chronique X+. Med Sci (Paris) 2007 ; 23 : 526–532. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.