Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 1, Janvier 2015
Page(s) 43 - 52
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153101012
Publié en ligne 6 février 2015
  1. Segal AW, Jones OT. Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 1978 ; 276 : 515–517. [CrossRef] [PubMed] [Google Scholar]
  2. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007 ; 87 : 245–313. [CrossRef] [PubMed] [Google Scholar]
  3. Morel F. Molecular aspects of chronic granulomatous disease. The NADPH oxidase complex. Bull Acad Natl Med 2007; 191 : 377–390; discussion 90–2. [PubMed] [Google Scholar]
  4. Bedard K, Lardy B, Krause KH. NOX family NADPH oxidases: not just in mammals. Biochimie 2007 ; 89 : 1107–1112. [CrossRef] [PubMed] [Google Scholar]
  5. Kawahara T, Quinn MT, Lambeth JD. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 2007 ; 7 : 109. [CrossRef] [PubMed] [Google Scholar]
  6. Lardy B, Bof M, Aubry L, et al. NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. Biochim Biophys Acta 2005 ; 1744 : 199–212. [CrossRef] [PubMed] [Google Scholar]
  7. Goyal P, Weissmann N, Rose F, et al. Identification of novel Nox4 splice variants with impact on ROS levels in A549 cells. Biochem Biophys Res Commun 2005 ; 329 : 32–39. [CrossRef] [PubMed] [Google Scholar]
  8. Bedard K, Jaquet V, Krause KH. NOX5: from basic biology to signaling and disease. Free Radic Biol Med 2012 ; 52 : 725–734. [CrossRef] [PubMed] [Google Scholar]
  9. Chen F, Haigh S, Barman S, Fulton DJ. From form to function: the role of Nox4 in the cardiovascular system. Front Physiol 2012 ; 3 : 412. [PubMed] [Google Scholar]
  10. Lassegue B. San Martin A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012 ; 110 : 1364–1390. [CrossRef] [PubMed] [Google Scholar]
  11. Zhang L, Nguyen MV, Lardy B, et al. New insight into the Nox4 subcellular localization in HEK293 cells: first monoclonal antibodies against Nox4. Biochimie 2011 ; 93 : 457–468. [CrossRef] [PubMed] [Google Scholar]
  12. Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 2002 ; 59 : 1428–1459. [CrossRef] [PubMed] [Google Scholar]
  13. Sumimoto H.. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. Febs J 2008 ; 275 : 3249–3277. [CrossRef] [PubMed] [Google Scholar]
  14. Takac I, Schroder K, Zhang L, et al. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 2011 ; 286 : 13304–13313. [CrossRef] [PubMed] [Google Scholar]
  15. Jackson HM, Kawahara T, Nisimoto Y, et al. Nox4 B-loop creates an interface between the transmembrane and dehydrogenase domains. J Biol Chem 2010 ; 285 : 10281–10290. [CrossRef] [PubMed] [Google Scholar]
  16. De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox signal 2014 ; 20 : 2776–2793. [CrossRef] [PubMed] [Google Scholar]
  17. Morel F, Vignais PV. Examination of the oxidase function of the b-type cytochrome in human polymorphonuclear leucocytes. Biochim Biophys Acta 1984 ; 764 : 213–225. [CrossRef] [PubMed] [Google Scholar]
  18. Kawahara T, Jackson HM, Smith SM, et al. Nox5 forms a functional oligomer mediated by self-association of its dehydrogenase domain. Biochemistry 2011 ; 50 : 2013–2025. [CrossRef] [PubMed] [Google Scholar]
  19. Nguyen MV, Lardy B, Rousset F, et al. Quinone compounds regulate the level of ROS production by the NADPH oxidase Nox4. Biochem Pharmacol 2013 ; 85 : 1644–1654. [CrossRef] [PubMed] [Google Scholar]
  20. Baillet A, Xu R, Grichine A, et al. Coupling of 6-phosphogluconate dehydrogenase with NADPH oxidase in neutrophils: Nox2 activity regulation by NADPH availability. Faseb J 2011 ; 25 : 2333–2343. [CrossRef] [PubMed] [Google Scholar]
  21. Pick E. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: Outsourcing a key task. Small GTPases 2014; 5. [Google Scholar]
  22. Boussetta T, Gougerot-Pocidalo MA, Hayem G, et al. The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alpha-induced priming of the NADPH oxidase in human neutrophils. Blood 2010 ; 116 : 5795–5802. [CrossRef] [PubMed] [Google Scholar]
  23. Paclet MH, Coleman AW, Vergnaud S, Morel F. P67-phox-mediated NADPH oxidase assembly: imaging of cytochrome b558 liposomes by atomic force microscopy. Biochemistry 2000 ; 39 : 9302–9310. [CrossRef] [PubMed] [Google Scholar]
  24. Berthier S, Paclet MH, Lerouge S, et al. Changing the conformation state of cytochrome b558 initiates NADPH oxidase activation: MRP8/MRP14 regulation. J Biol Chem 2003 ; 278 : 25499–25508. [CrossRef] [PubMed] [Google Scholar]
  25. Campion Y, Jesaitis AJ, Nguyen MV, et al. New p22-phox monoclonal antibodies: identification of a conformational probe for cytochrome b 558. J Innate Immun 2009 ; 1 : 556–569. [CrossRef] [PubMed] [Google Scholar]
  26. Campion Y, Paclet MH, Jesaitis AJ, et al. New insights into the membrane topology of the phagocyte NADPH oxidase: characterization of an anti-gp91-phox conformational monoclonal antibody. Biochimie 2007 ; 89 : 1145–1158. [CrossRef] [PubMed] [Google Scholar]
  27. Berthier S, Nguyen MV, Baillet A, et al. Molecular interface of S100A8 with cytochrome b558 and NADPH oxidase activation. PLoS One 2012 ; 7 : e40277. [CrossRef] [PubMed] [Google Scholar]
  28. Debbabi M, Kroviarski Y, Bournier O, et al. NOXO1 phosphorylation on serine 154 is critical for optimal NADPH oxidase 1 assembly and activation. Faseb J 2013 ; 27 : 1733–1748. [CrossRef] [PubMed] [Google Scholar]
  29. Gianni D, DerMardirossian C, Bokoch GM. Direct interaction between Tks proteins and the N-terminal proline-rich region (PRR) of NoxA1 mediates Nox1-dependent ROS generation. Eur J Cell Biol 2011 ; 90 : 164–171. [CrossRef] [PubMed] [Google Scholar]
  30. Serrander L, Cartier L, Bedard K, et al. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 2007 ; 406 : 105–114. [CrossRef] [PubMed] [Google Scholar]
  31. Nguyen MV, Zhang L, Lhomme S, et al. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity. Biochem Biophys Res Commun 2012 ; 419 : 453–458. [CrossRef] [PubMed] [Google Scholar]
  32. Nisimoto Y, Jackson HM, Ogawa H, et al. Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain. Biochemistry 2010 ; 49 : 2433–2442. [CrossRef] [PubMed] [Google Scholar]
  33. von Lohneysen K, Noack D, Hayes P, et al. Constitutive NADPH oxidase 4 activity resides in the composition of the B-loop and the penultimate C terminus. J Biol Chem 2012 ; 287 : 8737–8745. [CrossRef] [PubMed] [Google Scholar]
  34. Lyle AN, Deshpande NN, Taniyama Y, et al. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 2009 ; 105 : 249–259. [CrossRef] [PubMed] [Google Scholar]
  35. Altenhofer S, Radermacher KA, Kleikers PW, et al. Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 2014, sous presse. [Google Scholar]
  36. Rousset F, Nguyen MV, Grange L, et al. Heme oxygenase-1 regulates matrix metalloproteinase MMP-1 secretion and chondrocyte cell death via Nox4 NADPH oxidase activity in chondrocytes. PLoS One 2013 ; 8 : e66478. [CrossRef] [PubMed] [Google Scholar]
  37. Grange L, Nguyen MV, Lardy B, et al. NAD(P)H oxidase activity of Nox4 in chondrocytes is both inducible and involved in collagenase expression. Antioxid Redox Signal 2006 ; 8 : 1485–1496. [CrossRef] [PubMed] [Google Scholar]
  38. Tirone F, Radu L, Craescu CT, Cox JA. Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5. Biochemistry 2010 ; 49 : 761–771. [CrossRef] [PubMed] [Google Scholar]
  39. Morel F, Boulay F, Doussière J, et al. Bases moléculaires de la granulomatose septique chronique. Med Sci (Paris) 1992 ; 8 : 912–920. [CrossRef] [Google Scholar]
  40. Stasia MJ, Li XJ. Genetics and immunopathology of chronic granulomatous disease. Semin Immunopathol 2008 ; 30 : 209–235. [CrossRef] [PubMed] [Google Scholar]
  41. Banfi B, Malgrange B, Knisz J, et al. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 2004 ; 279 : 46065–46072. [CrossRef] [PubMed] [Google Scholar]
  42. Cifuentes-Pagano E, Meijles DN, Pagano PJ. The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls. Antioxid Redox Signal 2014 ; 20 : 2741–2754. [CrossRef] [PubMed] [Google Scholar]
  43. Krause KH, Lambeth D, Kronke M. NOX enzymes as drug targets. Cell Mol Life Sci 2012 ; 69 : 2279–2282. [CrossRef] [PubMed] [Google Scholar]
  44. Cross AR, Segal AW. The NADPH oxidase of professional phagocytes-prototype of the NOX electron transport chain systems. Biochim Biophys Acta 2004 ; 1657 : 1–22. [CrossRef] [Google Scholar]
  45. Marsolier J, Weitzman J. Pin1: une peptidyl-prolyl cis-trans isomérase multifonctionnelle et une cible anticancéreuse prometteuse. Med Sci (Paris) 2014 ; 30 : 772–778. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Stasia MJ. La granulomatose septique chronique X+. Med Sci (Paris) 2007 ; 23 : 526–532. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.