Free Access
Med Sci (Paris)
Volume 31, Number 1, Janvier 2015
Page(s) 35 - 42
Section M/S Revues
Published online 06 February 2015
  1. Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005 ; 28 : 223–250. [CrossRef] [PubMed] [Google Scholar]
  2. Kernie SG, Parent JM. Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol Dis 2010 ; 37 : 267–274. [CrossRef] [PubMed] [Google Scholar]
  3. Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002 ; 110 : 385–397. [CrossRef] [PubMed] [Google Scholar]
  4. Andersson E, Tryggvason U, Deng Q, et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 2006 ; 124 : 393–405. [CrossRef] [PubMed] [Google Scholar]
  5. Nefzger CM, Haynes JM, Pouton CW. Directed expression of Gata2, Mash1, and Foxa2 synergize to induce the serotonergic neuron phenotype during in vitro differentiation of embryonic stem cells. Stem Cells 2011 ; 29 : 928–939. [CrossRef] [PubMed] [Google Scholar]
  6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  7. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myo-blasts. Cell 1987 ; 51 : 987–1000. [CrossRef] [PubMed] [Google Scholar]
  8. Weintraub H, Tapscott SJ, Davis RL, et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA 1989 ; 86 : 5434–5438. [CrossRef] [Google Scholar]
  9. Choi J, Costa ML, Mermelstein CS, et al. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci USA 1990 ; 87 : 7988–7992. [CrossRef] [Google Scholar]
  10. Xie H, Ye M, Feng R, Graf T. Stepwise reprogramming of B cells into macrophages. Cell 2004 ; 117 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  11. Feng R, Desbordes SC, Xie H, et al. PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci USA 2008; 105 : 6057–6062. [CrossRef] [Google Scholar]
  12. Vierbuchen T, Ostermeier A, Pang ZP, et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010 ; 463 : 1035–1041. [CrossRef] [PubMed] [Google Scholar]
  13. Vierbuchen T, Wernig M. Direct lineage conversions: unnatural but useful? Nat Biotechnol 2011 ; 29 : 892–907. [CrossRef] [PubMed] [Google Scholar]
  14. Yang N, Ng YH, Pang ZP, et al. Induced neuronal cells: how to make and define a neuron? Cell Stem Cell 2011 ; 9 : 517–527. [CrossRef] [PubMed] [Google Scholar]
  15. Allodi I, Hedlund E. Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish. Front Neurosci 2014 ; 8 : 109. [CrossRef] [PubMed] [Google Scholar]
  16. Anderson S, Vanderhaeghen P. Cortical neurogenesis from pluriotent stem cells : complexity emerging from simplicity. Curr Opin Neurobiol 2014; 27C : 151–157. [CrossRef] [Google Scholar]
  17. Qiang L, Fujita R, Yamashita T, et al. Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 2011 ; 146 : 359–371. [CrossRef] [PubMed] [Google Scholar]
  18. Caiazzo M, Dell’Anno MT, Dvoretskova E, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 2011 ; 476 : 224–227. [CrossRef] [PubMed] [Google Scholar]
  19. Son EY, Ichida JK, Wainger BJ, et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 2011 ; 9 : 205–218. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. Ang CE, Wernig M. Induced neuronal reprogramming. J Comp Neurol 2014 ; 522 : 2877–2886. [CrossRef] [PubMed] [Google Scholar]
  21. Kim J, Su SC, Wang H, et al. Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 2011 ; 9 : 413–419. [CrossRef] [PubMed] [Google Scholar]
  22. Liu X, Li F, Stubblefield EA, et al. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 2012 ; 22 : 321–332. [CrossRef] [PubMed] [Google Scholar]
  23. Barker RA, Barrett J, Mason SL, Björkund A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol 2013 ; 12 : 84–91. [CrossRef] [PubMed] [Google Scholar]
  24. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009 ; 32 : 638–647. [CrossRef] [PubMed] [Google Scholar]
  25. Robel S, Berninger B, Gotz M. The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 2011 ; 12 : 88–104. [CrossRef] [PubMed] [Google Scholar]
  26. Heins N, Malatesta P, Cecconi F, et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 2002 ; 5 : 308–315. [CrossRef] [PubMed] [Google Scholar]
  27. Berninger B, Costa MR, Koch U, et al. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 2007 ; 27 : 8654–8664. [CrossRef] [PubMed] [Google Scholar]
  28. Heinrich C, Blum R, Gascon S, et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 2010 ; 8 : e1000373. [CrossRef] [PubMed] [Google Scholar]
  29. Heinrich C, Gascon S, Masserdotti G, et al. Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nat Protoc 2011 ; 6 : 214–228. [CrossRef] [PubMed] [Google Scholar]
  30. Heinrich C, Gotz M, Berninger B. Reprogramming of postnatal astroglia of the mouse neocortex into functional, synapse-forming neurons. Methods Mol Biol 2012 ; 814 : 485–498. [CrossRef] [PubMed] [Google Scholar]
  31. Blum R, Heinrich C, Sanchez R, et al. Neuronal network formation from reprogrammed early postnatal rat cortical glial cells. Cereb Cortex 2011 ; 21 : 413–424. [CrossRef] [PubMed] [Google Scholar]
  32. Addis RC, Hsu FC, Wright RL, et al. Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector. PLoS One 2011 ; 6 : e28719. [CrossRef] [PubMed] [Google Scholar]
  33. Guo Z, Zhang L, Wu Z, et al. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 2014 ; 14 : 188–202. [CrossRef] [PubMed] [Google Scholar]
  34. Karow M, Sanchez R, Schichor C, et al. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 2012 ; 11 : 471–476. [CrossRef] [PubMed] [Google Scholar]
  35. Goritz C, Dias DO, Tomilin N, et al. A pericyte origin of spinal cord scar tissue. Science 2011 ; 333 : 238–242. [CrossRef] [PubMed] [Google Scholar]
  36. Torper O, Pfisterer U, Wolf DA, et al. Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci USA 2013 ; 110 : 7038–7043. [CrossRef] [Google Scholar]
  37. Niu W, Zang T, Zou Y, et al. in vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol 2013 ; 15 : 1164–1175. [CrossRef] [PubMed] [Google Scholar]
  38. Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron 2003 ; 39 : 749–765. [CrossRef] [PubMed] [Google Scholar]
  39. Heinrich C, Bergami M, Gascón S, et al. Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Reports 2014 ; 3 : 1000–1014. [CrossRef] [PubMed] [Google Scholar]
  40. Grande A, Sumiyoshi K, Lopez-Juarez A, et al. Environmental impact on direct neuronal reprogramming in vivo in the adult brain. Nat Commun 2013 ; 4 : 2373. [CrossRef] [PubMed] [Google Scholar]
  41. Su Z, Niu W, Liu ML, et al. in vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 2014 ; 5 : 3338. [PubMed] [Google Scholar]
  42. De la Rossa A, Bellone C, Golding B, et al. in vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat Neurosci 2013 ; 16 : 193–200. [CrossRef] [PubMed] [Google Scholar]
  43. Rouaux C, Arlotta P. Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat Cell Biol 2013 ; 15 : 214–221. [CrossRef] [PubMed] [Google Scholar]
  44. Arlotta P, Molyneaux BJ, Chen J, et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 2005 ; 45 : 207–221. [CrossRef] [PubMed] [Google Scholar]
  45. Molyneaux BJ, Arlotta P, Hirata T, et al. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 2005 ; 47 : 817–831. [CrossRef] [PubMed] [Google Scholar]
  46. Chen JG, Rasin MR, Kwan KY, Sestan N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc Natl Acad Sci USA 2005 ; 102 : 17792–17797. [CrossRef] [Google Scholar]
  47. Chen B, Schaevitz LR, McConnell SK. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc Natl Acad Sci USA 2013 ; 102 : 17184–17189. [CrossRef] [Google Scholar]
  48. Rouaux C, Arlotta P. Fezf2 directs the differentiation of corticofugal neurons from striatal progenitors in vivo. Nat Neurosci 2010 ; 13 : 1345–1347. [CrossRef] [PubMed] [Google Scholar]
  49. Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV : progress and challenges. Nat Rev Genet 2011 ; 12 : 341–355. [CrossRef] [PubMed] [Google Scholar]
  50. Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014 ; 15 : 541–555. [CrossRef] [PubMed] [Google Scholar]
  51. Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005 ; 11 : 271–276. [CrossRef] [PubMed] [Google Scholar]
  52. Zhou Q, Brown J, Kanarek A, et al. in vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008 ; 455 : 627–632. [CrossRef] [PubMed] [Google Scholar]
  53. Qian L, Huang Y, Spencer CI, et al. in vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012 ; 485 : 593–598. [CrossRef] [PubMed] [Google Scholar]
  54. Song K, Nam YJ, Luo X, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 2012 ; 485 : 599–604. [CrossRef] [PubMed] [Google Scholar]
  55. Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the cortex of adult mice. Nature 2000 ; 405 : 951–955. [CrossRef] [PubMed] [Google Scholar]
  56. Chen J, Magavi SS, Macklis JD. Neurogenesis of corticoscpinal motor neurons extending spinal projections in adult mice. Proc Natl Acad Sci USA 2004 ; 101 : 16357–16362. [CrossRef] [Google Scholar]
  57. Vieira A, Druelle N, Courtney M, et al. Reprogrammation des cellules pancréatiques en cellules β. Med Sci (Paris) 2013 ; 29 : 749–755. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.