Free Access
Issue
Med Sci (Paris)
Volume 30, Number 12, Décembre 2014
Page(s) 1177 - 1183
Section Forum
DOI https://doi.org/10.1051/medsci/20143012022
Published online 24 December 2014
  1. Jacob F. Le Jeu des possibles, essai sur la diversité du vivant. Paris : Fayard, 1981. [Google Scholar]
  2. Jacob F. Evolution and tinkering. Science 1977 ; 196 : 1161–1166. [CrossRef] [PubMed] [Google Scholar]
  3. Long M, Betran E, Thornton K, Wang W. The origin of new genes: glimpses from the young and old. Nat Rev Genet 2003 ; 4 : 865–875. [CrossRef] [PubMed] [Google Scholar]
  4. Long M, VanKuren NW, Chen S, Vibranovski MD. New gene evolution: little did we know. Annu Rev Genet 2013 ; 47 : 307–333. [CrossRef] [PubMed] [Google Scholar]
  5. Tautz D, Domazet-Lošo T. The evolutionary origin of orphan genes. Nat Rev Genet 2011 ; 12 : 692–702. [CrossRef] [PubMed] [Google Scholar]
  6. Ding Y, Zhou Q, Wang W. Origins of new genes and evolution of their novel functions. Annu Rev Ecol Evol Syst 2012 ; 43 : 345–363. [CrossRef] [Google Scholar]
  7. Carvunis AR, Rolland T, Wapinski I, et al. Protogenes and de novo gene birth. Nature 2012 ; 487 : 370–374. [CrossRef] [PubMed] [Google Scholar]
  8. Xie C, Zhang YE, Chen JY, et al. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs. PLoS Genet 2012 ; 8 : e1002942. [CrossRef] [PubMed] [Google Scholar]
  9. Bridges CB. The bar “gene” - A duplication. Science 1936 ; 83 : 210–211. [CrossRef] [PubMed] [Google Scholar]
  10. Sturtevant AH. The effects of unequal crossing over at the bar locus in Drosophila. Genetics 1925 ; 10 : 117–147. [PubMed] [Google Scholar]
  11. Ohno S. Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence. Proc Natl Acad Sci USA 1984 ; 81 : 2421–2425. [CrossRef] [Google Scholar]
  12. Muller HJ. Bar duplication. Science 1936 ; 83 : 528–530. [CrossRef] [PubMed] [Google Scholar]
  13. Miquelis A, Abi-Rached L, Gilles A, Pontarotti P. Mise en évidence de processus de duplications en bloc dans le génome des vertébrés. Med Sci (Paris) 2002 ; 18 : 1051–1054. [CrossRef] [EDP Sciences] [Google Scholar]
  14. Ohno S., Evolution by gene duplication. Berlin : Springer-Verlag, 1970. [CrossRef] [Google Scholar]
  15. Gilbert W. Why genes in pieces? Nature 1978 ; 271 : 501. [CrossRef] [PubMed] [Google Scholar]
  16. Daubin V, Abby S. Les transferts horizontaux de gènes et l’arbre de la vie. Med Sci (Paris) 2012 ; 28 : 695–698. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. Da Lage JL, Binder M, Hua-Van A, et al. Gene make-up: rapid, massive intron gains after horizontal transfer of a bacterial alpha-amylase gene to Basidiomycetes. BMC Evol Biol 2013 ; 13 : 40. [CrossRef] [PubMed] [Google Scholar]
  18. Da Lage JL, Danchin EG, Casane D. Where do animal alpha-amylases come from? An interkingdom trip. FEBS Lett 2007 ; 581 : 3927–3935. [CrossRef] [PubMed] [Google Scholar]
  19. Dujon B. The yeast genome project: What did we learn?. Trends Genet 1996 ; 12 : 263–270. [CrossRef] [PubMed] [Google Scholar]
  20. Khalturin K, Hemmrich G, Fraune S, et al. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet 2009 ; 25 : 404–413. [CrossRef] [PubMed] [Google Scholar]
  21. Daubin V, Ochman H. Bacterial genomes as new gene homes: The genealogy of ORFans in E. coli. Genome Res 2004 ; 14 : 1036–1042. [CrossRef] [PubMed] [Google Scholar]
  22. Fischer D, Eisenberg D. Finding families for genomic ORFans. Bioinformatics 1999 ; 15 : 759–762. [CrossRef] [PubMed] [Google Scholar]
  23. Pavesi A, Magiorkinis G, Karlin DG., Viral proteins originated de novo by overprinting can be identified by codon usage: Application to the “gene nursery” of deltaretroviruses. PLoS Comput Biol 2013 ; 9 : e1003162. [CrossRef] [PubMed] [Google Scholar]
  24. Rancurel C, Khosravi M, Dunker AK, et al. Overlapping genes produce proteins with unusual Sequence properties and offer insight into de novo protein creation. J Virol 2009 ; 83 : 10719–10736. [CrossRef] [PubMed] [Google Scholar]
  25. Yin Y, Fischer D. Identification investigation of ORFans in the viral world. BMC Genomics 2008 ; 9 : 24. [CrossRef] [PubMed] [Google Scholar]
  26. Yin YB, Fischer D., On the origin of microbial ORFans: quantifying the strength of the evidence for viral lateral transfer. BMC Evol Biol 2006 ; 6 : 63. [CrossRef] [PubMed] [Google Scholar]
  27. Murphy DN, McLysaght A., De novo origin of protein-coding genes in murine rodents. PLoS One 2012 ; 7 : e48650. [CrossRef] [PubMed] [Google Scholar]
  28. Casane D, Laurenti P. Une toute nouvelle tête pour l’ancêtre des vertébrés à mâchoires. Med Sci (Paris) 2014 ; 30 : 38–40. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  29. Casane D, Laurenti P. Penser la biologie dans un cadre phylogénétique. L’exemple de l’évolution des vertébrés. Med Sci (Paris) 2012 ; 28 : 1121–1127. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Neme R, Tautz D., Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 2013 ; 14 : 117. [CrossRef] [PubMed] [Google Scholar]
  31. Andrews SJ, Rothnagel JA. Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 2014 ; 15 : 193–204. [CrossRef] [PubMed] [Google Scholar]
  32. Kim MS, Pinto SM, Getnet D, et al. A draft map of the human proteome. Nature 2014 ; 509 : 575–581. [CrossRef] [PubMed] [Google Scholar]
  33. Heinen TJAJ, Staubach F, Häming D, Tautz D. Emergence of a new gene from an intergenic region. Curr Biol 2009 ; 19 : 1527–1531. [CrossRef] [PubMed] [Google Scholar]
  34. Ranz JM, Parsch J. Newly evolved genes: Moving from comparative genomics to functional studies in model systems. Bioessays 2012 ; 34 : 477–483. [CrossRef] [PubMed] [Google Scholar]
  35. Reinhardt JA, Wanjiru BM, Brant AT, et al. De novo ORFs in Drosophila are important to organismal fitness, evolved rapidly from previously non-coding sequences. PLoS Genet 2013 ; 9 : e1003860. [CrossRef] [PubMed] [Google Scholar]
  36. Zhao L, Saelao P, Jones CD, Begun DJ. Origin and spread of de novo genes in Drosophila melanogaster populations. Science 2014 ; 343 : 769–772. [CrossRef] [PubMed] [Google Scholar]
  37. Palmieri N, Kosiol C, Schlotterer C., The life cycle of Drosophila orphan genes. Elife 2014 ; 3 : e01311. [CrossRef] [PubMed] [Google Scholar]
  38. Blomme T, Vandepoele K, De Bodt S, et al. The gain, loss of genes during 600 million years of vertebrate evolution. Genome Biol 2006 ; 7 : R43. [CrossRef] [PubMed] [Google Scholar]
  39. Metcalfe CJ, Casane D., Accommodating the load: The transposable element content of very large genomes. Mob Genet Elements 2013 ; 3 : e24775. [CrossRef] [PubMed] [Google Scholar]
  40. Metcalfe CJ, Filee J, Germon I, et al. Evolution of the Australian lungfish (Neoceratodus forsteri) genome: a major role for CR1 and L2 LINE elements. Mol Biol Evol 2012 ; 29 : 3529–3539. [CrossRef] [PubMed] [Google Scholar]
  41. Palazzo AF, The Gregory TR., case for Junk DNA., Genet PLoS, ; 2014 ; 10 : e1004351. [Google Scholar]
  42. Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 2007 ; 14 : 103–105. [CrossRef] [PubMed] [Google Scholar]
  43. Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, et al. Architecture and evolution of a minute plant genome. Nature 2013 ; 498 : 94–98. [CrossRef] [PubMed] [Google Scholar]
  44. Aparicio S, Chapman J, Stupka E, et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 2002 ; 297 : 1301–1310. [CrossRef] [PubMed] [Google Scholar]
  45. Sun C, Wyngaard G, Walton D, et al. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development. BMC Genomics 2014 ; 15 : 186. [CrossRef] [PubMed] [Google Scholar]
  46. Smith JJ, Antonacci F, Eichler EE, Amemiya CT. Programmed loss of millions of base pairs from a vertebrate genome. Proc Natl Acad Sci USA 2009 ; 106 : 11212–11217. [CrossRef] [Google Scholar]
  47. Doolittle WF, Brunet TDP, Linquist S, Gregory TR. Distinguishing between “function” and “effect” in genome biology. Genome Biol Evol 2014 ; 6 : 1234–1237. [CrossRef] [PubMed] [Google Scholar]
  48. Lindblad-Toh K, Garber M, Zuk O, et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 2011 ; 478 : 476–482. [CrossRef] [PubMed] [Google Scholar]
  49. Lynch M. The origins of eukaryotic gene structure. Mol Biol Evol 2006 ; 23 : 450–468. [CrossRef] [PubMed] [Google Scholar]
  50. Lynch M., The origins of genome architecture, Sunderland, Massachusetts: Sinauer, 2007. [Google Scholar]
  51. Lynch M. Evolution of the mutation rate. Trends Genet 2010 ; 26 : 345–352. [CrossRef] [PubMed] [Google Scholar]
  52. Gilbert C, Schaack S, Feschotte C. Quand les éléments génétiques mobiles bondissent entre espèces animales. Med Sci (Paris) 2010 ; 26 : 1025–1027. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.