Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 12, Décembre 2014
Page(s) 1177 - 1183
Section Forum
DOI https://doi.org/10.1051/medsci/20143012022
Publié en ligne 24 décembre 2014
  1. Jacob F. Le Jeu des possibles, essai sur la diversité du vivant. Paris : Fayard, 1981.
  2. Jacob F. Evolution and tinkering. Science 1977 ; 196 : 1161–1166. [CrossRef] [PubMed]
  3. Long M, Betran E, Thornton K, Wang W. The origin of new genes: glimpses from the young and old. Nat Rev Genet 2003 ; 4 : 865–875. [CrossRef] [PubMed]
  4. Long M, VanKuren NW, Chen S, Vibranovski MD. New gene evolution: little did we know. Annu Rev Genet 2013 ; 47 : 307–333. [CrossRef] [PubMed]
  5. Tautz D, Domazet-Lošo T. The evolutionary origin of orphan genes. Nat Rev Genet 2011 ; 12 : 692–702. [CrossRef] [PubMed]
  6. Ding Y, Zhou Q, Wang W. Origins of new genes and evolution of their novel functions. Annu Rev Ecol Evol Syst 2012 ; 43 : 345–363. [CrossRef]
  7. Carvunis AR, Rolland T, Wapinski I, et al. Protogenes and de novo gene birth. Nature 2012 ; 487 : 370–374. [CrossRef] [PubMed]
  8. Xie C, Zhang YE, Chen JY, et al. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs. PLoS Genet 2012 ; 8 : e1002942. [CrossRef] [PubMed]
  9. Bridges CB. The bar “gene” - A duplication. Science 1936 ; 83 : 210–211. [CrossRef] [PubMed]
  10. Sturtevant AH. The effects of unequal crossing over at the bar locus in Drosophila. Genetics 1925 ; 10 : 117–147. [PubMed]
  11. Ohno S. Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence. Proc Natl Acad Sci USA 1984 ; 81 : 2421–2425. [CrossRef]
  12. Muller HJ. Bar duplication. Science 1936 ; 83 : 528–530. [CrossRef] [PubMed]
  13. Miquelis A, Abi-Rached L, Gilles A, Pontarotti P. Mise en évidence de processus de duplications en bloc dans le génome des vertébrés. Med Sci (Paris) 2002 ; 18 : 1051–1054. [CrossRef] [EDP Sciences]
  14. Ohno S., Evolution by gene duplication. Berlin : Springer-Verlag, 1970. [CrossRef]
  15. Gilbert W. Why genes in pieces? Nature 1978 ; 271 : 501. [CrossRef] [PubMed]
  16. Daubin V, Abby S. Les transferts horizontaux de gènes et l’arbre de la vie. Med Sci (Paris) 2012 ; 28 : 695–698. [CrossRef] [EDP Sciences] [PubMed]
  17. Da Lage JL, Binder M, Hua-Van A, et al. Gene make-up: rapid, massive intron gains after horizontal transfer of a bacterial alpha-amylase gene to Basidiomycetes. BMC Evol Biol 2013 ; 13 : 40. [CrossRef] [PubMed]
  18. Da Lage JL, Danchin EG, Casane D. Where do animal alpha-amylases come from? An interkingdom trip. FEBS Lett 2007 ; 581 : 3927–3935. [CrossRef] [PubMed]
  19. Dujon B. The yeast genome project: What did we learn?. Trends Genet 1996 ; 12 : 263–270. [CrossRef] [PubMed]
  20. Khalturin K, Hemmrich G, Fraune S, et al. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet 2009 ; 25 : 404–413. [CrossRef] [PubMed]
  21. Daubin V, Ochman H. Bacterial genomes as new gene homes: The genealogy of ORFans in E. coli. Genome Res 2004 ; 14 : 1036–1042. [CrossRef] [PubMed]
  22. Fischer D, Eisenberg D. Finding families for genomic ORFans. Bioinformatics 1999 ; 15 : 759–762. [CrossRef] [PubMed]
  23. Pavesi A, Magiorkinis G, Karlin DG., Viral proteins originated de novo by overprinting can be identified by codon usage: Application to the “gene nursery” of deltaretroviruses. PLoS Comput Biol 2013 ; 9 : e1003162. [CrossRef] [PubMed]
  24. Rancurel C, Khosravi M, Dunker AK, et al. Overlapping genes produce proteins with unusual Sequence properties and offer insight into de novo protein creation. J Virol 2009 ; 83 : 10719–10736. [CrossRef] [PubMed]
  25. Yin Y, Fischer D. Identification investigation of ORFans in the viral world. BMC Genomics 2008 ; 9 : 24. [CrossRef] [PubMed]
  26. Yin YB, Fischer D., On the origin of microbial ORFans: quantifying the strength of the evidence for viral lateral transfer. BMC Evol Biol 2006 ; 6 : 63. [CrossRef] [PubMed]
  27. Murphy DN, McLysaght A., De novo origin of protein-coding genes in murine rodents. PLoS One 2012 ; 7 : e48650. [CrossRef] [PubMed]
  28. Casane D, Laurenti P. Une toute nouvelle tête pour l’ancêtre des vertébrés à mâchoires. Med Sci (Paris) 2014 ; 30 : 38–40. [CrossRef] [EDP Sciences] [PubMed]
  29. Casane D, Laurenti P. Penser la biologie dans un cadre phylogénétique. L’exemple de l’évolution des vertébrés. Med Sci (Paris) 2012 ; 28 : 1121–1127. [CrossRef] [EDP Sciences] [PubMed]
  30. Neme R, Tautz D., Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 2013 ; 14 : 117. [CrossRef] [PubMed]
  31. Andrews SJ, Rothnagel JA. Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 2014 ; 15 : 193–204. [CrossRef] [PubMed]
  32. Kim MS, Pinto SM, Getnet D, et al. A draft map of the human proteome. Nature 2014 ; 509 : 575–581. [CrossRef] [PubMed]
  33. Heinen TJAJ, Staubach F, Häming D, Tautz D. Emergence of a new gene from an intergenic region. Curr Biol 2009 ; 19 : 1527–1531. [CrossRef] [PubMed]
  34. Ranz JM, Parsch J. Newly evolved genes: Moving from comparative genomics to functional studies in model systems. Bioessays 2012 ; 34 : 477–483. [CrossRef] [PubMed]
  35. Reinhardt JA, Wanjiru BM, Brant AT, et al. De novo ORFs in Drosophila are important to organismal fitness, evolved rapidly from previously non-coding sequences. PLoS Genet 2013 ; 9 : e1003860. [CrossRef] [PubMed]
  36. Zhao L, Saelao P, Jones CD, Begun DJ. Origin and spread of de novo genes in Drosophila melanogaster populations. Science 2014 ; 343 : 769–772. [CrossRef] [PubMed]
  37. Palmieri N, Kosiol C, Schlotterer C., The life cycle of Drosophila orphan genes. Elife 2014 ; 3 : e01311. [CrossRef] [PubMed]
  38. Blomme T, Vandepoele K, De Bodt S, et al. The gain, loss of genes during 600 million years of vertebrate evolution. Genome Biol 2006 ; 7 : R43. [CrossRef] [PubMed]
  39. Metcalfe CJ, Casane D., Accommodating the load: The transposable element content of very large genomes. Mob Genet Elements 2013 ; 3 : e24775. [CrossRef] [PubMed]
  40. Metcalfe CJ, Filee J, Germon I, et al. Evolution of the Australian lungfish (Neoceratodus forsteri) genome: a major role for CR1 and L2 LINE elements. Mol Biol Evol 2012 ; 29 : 3529–3539. [CrossRef] [PubMed]
  41. Palazzo AF, The Gregory TR., case for Junk DNA., Genet PLoS, ; 2014 ; 10 : e1004351.
  42. Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 2007 ; 14 : 103–105. [CrossRef] [PubMed]
  43. Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, et al. Architecture and evolution of a minute plant genome. Nature 2013 ; 498 : 94–98. [CrossRef] [PubMed]
  44. Aparicio S, Chapman J, Stupka E, et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 2002 ; 297 : 1301–1310. [CrossRef] [PubMed]
  45. Sun C, Wyngaard G, Walton D, et al. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development. BMC Genomics 2014 ; 15 : 186. [CrossRef] [PubMed]
  46. Smith JJ, Antonacci F, Eichler EE, Amemiya CT. Programmed loss of millions of base pairs from a vertebrate genome. Proc Natl Acad Sci USA 2009 ; 106 : 11212–11217. [CrossRef]
  47. Doolittle WF, Brunet TDP, Linquist S, Gregory TR. Distinguishing between “function” and “effect” in genome biology. Genome Biol Evol 2014 ; 6 : 1234–1237. [CrossRef] [PubMed]
  48. Lindblad-Toh K, Garber M, Zuk O, et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 2011 ; 478 : 476–482. [CrossRef] [PubMed]
  49. Lynch M. The origins of eukaryotic gene structure. Mol Biol Evol 2006 ; 23 : 450–468. [CrossRef] [PubMed]
  50. Lynch M., The origins of genome architecture, Sunderland, Massachusetts: Sinauer, 2007.
  51. Lynch M. Evolution of the mutation rate. Trends Genet 2010 ; 26 : 345–352. [CrossRef] [PubMed]
  52. Gilbert C, Schaack S, Feschotte C. Quand les éléments génétiques mobiles bondissent entre espèces animales. Med Sci (Paris) 2010 ; 26 : 1025–1027. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.