Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 12, Décembre 2014
Page(s) 1169 - 1176
Section Prix Nobel 2014
DOI https://doi.org/10.1051/medsci/20143012021
Publié en ligne 24 décembre 2014
  1. Nicolas MT, Moreau M. Prix Nobel de Chimie 2008 (Osumo Shimomura, Martin Chalfie et Roger Y. Tsien) : Osumo Shimomura. Med Sci (Paris) 2008 ; 24 : 983–984. [CrossRef] [EDP Sciences] [PubMed]
  2. Pasquier H. Prix Nobel de Chimie 2008 (Osumo Shimomura, Martin Chalfie et Roger Y. Tsien) : lumière sur les protéines fluorescentes. Med Sci (Paris) 2008 ; 24 : 985–986. [CrossRef] [EDP Sciences] [PubMed]
  3. Salamero J. Prix Nobel de Chimie 2008 (Osumo Shimomura, Martin Chalfie et Roger Y. Tsien) : la « révolution-verte » est en marche. Med Sci (Paris) 2008 ; 24 : 987–988. [CrossRef] [EDP Sciences] [PubMed]
  4. Abbe E. Beiträge zur Theorie des Mikroscops und des mikroskopischen Wahrnehmung. Archiv fur mikroscopische Anatomy 1873 ; 9 : 413–418. [CrossRef]
  5. Gustafsson MGL, Agard DA, Sadat JW. Sevenfold improvement of axial resolution in 3D wide-field fluorescence microscopy using two objective lenses. Proc SPIE 1995 ; 2412 : 147–156. [CrossRef]
  6. Hell S, Stelzer E. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon-excitation. Opt Commun 1992 ; 93 : 277–282. [CrossRef]
  7. Pohl D, Denk W, Lanz M. Optical stethoscopy: image recording with resolution lambda/20. Appl Phys Lett 1984 ; 44 : 651–653. [CrossRef]
  8. Heintzmann R, Cremer C. lateral modulated excitation microscopy: improvement of resolution buy using a diffraction grating. Proc SPIE 1999 ; 3568 : 185–196. [CrossRef]
  9. Gustafsson MG. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 2000 ; 198 : 82–87. [CrossRef] [PubMed]
  10. Heintzmann R, Jovin T, Cremer C. Saturated patterned excitation microscopy a concept for optical resolution improvement. J Opt Soc Am A 2002 ; 19 : 1599–1609. [CrossRef]
  11. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994 ; 19 : 780–782. [CrossRef] [PubMed]
  12. Hell SW, Kroug M. Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B Lasers Opt 1995 ; 60 : 495–497. [CrossRef]
  13. Hell SW. Toward fluorescence nanoscopy. Nat Biotechnol 2003 ; 21 : 1347–1355. [CrossRef] [PubMed]
  14. Klar TA, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 2000 ; 97 : 8206–8210. [CrossRef]
  15. Rittweger E, Han KY, Irvine SE, et al. STED microscopy reveals colour centres with nanometric resolution. Nat Photon 2009 ; 3 : 144–147. [CrossRef]
  16. Requejo-Isidro J. Fluorescence nanoscopy. Methods and applications. J Chem Biol 2013 ; 6 : 97–120. [CrossRef] [PubMed]
  17. Schmidt R, Wurm CA, Punge A, et al. Mitochondrial cristae revealed with focused light. Nano Lett 2009 ; 9 : 2508–510. [CrossRef] [PubMed]
  18. Hell SW, Dyba M, Jakobs S. Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 2004 ; 14 : 599–609. [CrossRef] [PubMed]
  19. Westphal V, Rizzoli SO, Lauterbach MA, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 2008 ; 320 : 246–249. [CrossRef] [PubMed]
  20. Gelles J, Schnapp BJ, Sheetz MP. Tracking kinesin-driven movements with nanometre-scale precision. Nature 1988 ; 331 : 450–453. [CrossRef] [PubMed]
  21. Yildiz A, Forkey JN, McKinney SA, et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 2003 ; 300 : 2061–2065. [CrossRef] [PubMed]
  22. Moerner WE. New directions in single-molecule imaging and analysis. Proc Natl Acad Sci USA 2007 ; 104 : 12596–12602. [CrossRef]
  23. Moerner WE, Kador L. Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 1989 ; 62 : 2535–2538. [CrossRef] [PubMed]
  24. Betzig E, Trautman JK. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 1992 ; 257 : 189–195. [CrossRef] [PubMed]
  25. Betzig E, Chichester RJ. Single molecules observed by near-field scanning optical microscopy. Science 1993 ; 262 : 1422–1425. [CrossRef] [PubMed]
  26. Betzig E. Proposed method for molecular optical imaging. Opt Lett 1995 ; 20 : 237–239. [CrossRef] [PubMed]
  27. Dickson RM, Cubitt AB, Tsien RY, Moerner WE. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 1997 ; 388 : 355–358. [CrossRef] [PubMed]
  28. Betzig E, Patterson GH, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006 ; 313 : 1642–1645. [CrossRef] [PubMed]
  29. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006 ; 3 : 793–795. [CrossRef] [PubMed]
  30. Hess ST, Giriajan TPK, Mason MD. Ultra-high resolution imaging by fluorecence photoactivation localisation microscopy. Biophys J 2006 ; 91 : 4258–4272. [CrossRef] [PubMed]
  31. Thompson MA, Lew MD, Moerner WE. Extending microscopic resolution with single-molecule imaging and active control. Annu Rev Biophys 2012 ; 41 : 321–342. [CrossRef] [PubMed]
  32. Schmidt R, Wurm CA, Jakobs S, et al. Spherical nanosized focal spot unravels the interior of cells. Nat Methods 2008 ; 5 : 539–544. [CrossRef] [PubMed]
  33. Sharonov A, Hochstrasser RM. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 2006 ; 103 : 18911–18916. [CrossRef]
  34. Giannone G, Hosy E, Levet F, et al. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys J 2010 ; 99 : 1303–1310. [CrossRef] [PubMed]
  35. Löschberger A, van de Linde S, Dabauvalle MC, et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 2012 ; 125 : 570–575. [CrossRef] [PubMed]
  36. Izeddin I, Darzacq X, Dahan M. Microscopies cellulaires à l’échelle de la molécule individuelle - Représentation en sciences du vivant. Med Sci (Paris) 2011 ; 27 : 547–552. [CrossRef] [EDP Sciences] [PubMed]
  37. Malkusch S, Muranyi W, Müller B, et al. Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem Cell Biol 2013 ; 139 : 173–179. [CrossRef] [PubMed]
  38. Kamiyama D, Huang B. Development in the STORM. Dev Cell 2012 ; 23 : 1103–1110. [CrossRef] [PubMed]
  39. Zhu L, Zhang W, Elnatan D, Huang B. Faster STORM using compressed sensing. Nat Methods 2012 ; 9 : 721–723. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.