Free Access
Issue
Med Sci (Paris)
Volume 30, Number 12, Décembre 2014
Page(s) 1169 - 1176
Section Prix Nobel 2014
DOI https://doi.org/10.1051/medsci/20143012021
Published online 24 December 2014
  1. Nicolas MT, Moreau M. Prix Nobel de Chimie 2008 (Osumo Shimomura, Martin Chalfie et Roger Y. Tsien) : Osumo Shimomura. Med Sci (Paris) 2008 ; 24 : 983–984. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Pasquier H. Prix Nobel de Chimie 2008 (Osumo Shimomura, Martin Chalfie et Roger Y. Tsien) : lumière sur les protéines fluorescentes. Med Sci (Paris) 2008 ; 24 : 985–986. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Salamero J. Prix Nobel de Chimie 2008 (Osumo Shimomura, Martin Chalfie et Roger Y. Tsien) : la « révolution-verte » est en marche. Med Sci (Paris) 2008 ; 24 : 987–988. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Abbe E. Beiträge zur Theorie des Mikroscops und des mikroskopischen Wahrnehmung. Archiv fur mikroscopische Anatomy 1873 ; 9 : 413–418. [Google Scholar]
  5. Gustafsson MGL, Agard DA, Sadat JW. Sevenfold improvement of axial resolution in 3D wide-field fluorescence microscopy using two objective lenses. Proc SPIE 1995 ; 2412 : 147–156. [CrossRef] [Google Scholar]
  6. Hell S, Stelzer E. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon-excitation. Opt Commun 1992 ; 93 : 277–282. [CrossRef] [Google Scholar]
  7. Pohl D, Denk W, Lanz M. Optical stethoscopy: image recording with resolution lambda/20. Appl Phys Lett 1984 ; 44 : 651–653. [CrossRef] [Google Scholar]
  8. Heintzmann R, Cremer C. lateral modulated excitation microscopy: improvement of resolution buy using a diffraction grating. Proc SPIE 1999 ; 3568 : 185–196. [CrossRef] [Google Scholar]
  9. Gustafsson MG. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 2000 ; 198 : 82–87. [Google Scholar]
  10. Heintzmann R, Jovin T, Cremer C. Saturated patterned excitation microscopy a concept for optical resolution improvement. J Opt Soc Am A 2002 ; 19 : 1599–1609. [CrossRef] [Google Scholar]
  11. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994 ; 19 : 780–782. [Google Scholar]
  12. Hell SW, Kroug M. Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B Lasers Opt 1995 ; 60 : 495–497. [CrossRef] [Google Scholar]
  13. Hell SW. Toward fluorescence nanoscopy. Nat Biotechnol 2003 ; 21 : 1347–1355. [CrossRef] [PubMed] [Google Scholar]
  14. Klar TA, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 2000 ; 97 : 8206–8210. [CrossRef] [Google Scholar]
  15. Rittweger E, Han KY, Irvine SE, et al. STED microscopy reveals colour centres with nanometric resolution. Nat Photon 2009 ; 3 : 144–147. [CrossRef] [Google Scholar]
  16. Requejo-Isidro J. Fluorescence nanoscopy. Methods and applications. J Chem Biol 2013 ; 6 : 97–120. [CrossRef] [PubMed] [Google Scholar]
  17. Schmidt R, Wurm CA, Punge A, et al. Mitochondrial cristae revealed with focused light. Nano Lett 2009 ; 9 : 2508–510. [CrossRef] [PubMed] [Google Scholar]
  18. Hell SW, Dyba M, Jakobs S. Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 2004 ; 14 : 599–609. [CrossRef] [PubMed] [Google Scholar]
  19. Westphal V, Rizzoli SO, Lauterbach MA, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 2008 ; 320 : 246–249. [CrossRef] [PubMed] [Google Scholar]
  20. Gelles J, Schnapp BJ, Sheetz MP. Tracking kinesin-driven movements with nanometre-scale precision. Nature 1988 ; 331 : 450–453. [Google Scholar]
  21. Yildiz A, Forkey JN, McKinney SA, et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 2003 ; 300 : 2061–2065. [CrossRef] [PubMed] [Google Scholar]
  22. Moerner WE. New directions in single-molecule imaging and analysis. Proc Natl Acad Sci USA 2007 ; 104 : 12596–12602. [CrossRef] [Google Scholar]
  23. Moerner WE, Kador L. Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 1989 ; 62 : 2535–2538. [CrossRef] [PubMed] [Google Scholar]
  24. Betzig E, Trautman JK. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 1992 ; 257 : 189–195. [CrossRef] [PubMed] [Google Scholar]
  25. Betzig E, Chichester RJ. Single molecules observed by near-field scanning optical microscopy. Science 1993 ; 262 : 1422–1425. [CrossRef] [PubMed] [Google Scholar]
  26. Betzig E. Proposed method for molecular optical imaging. Opt Lett 1995 ; 20 : 237–239. [CrossRef] [PubMed] [Google Scholar]
  27. Dickson RM, Cubitt AB, Tsien RY, Moerner WE. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 1997 ; 388 : 355–358. [CrossRef] [PubMed] [Google Scholar]
  28. Betzig E, Patterson GH, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006 ; 313 : 1642–1645. [CrossRef] [PubMed] [Google Scholar]
  29. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006 ; 3 : 793–795. [Google Scholar]
  30. Hess ST, Giriajan TPK, Mason MD. Ultra-high resolution imaging by fluorecence photoactivation localisation microscopy. Biophys J 2006 ; 91 : 4258–4272. [CrossRef] [PubMed] [Google Scholar]
  31. Thompson MA, Lew MD, Moerner WE. Extending microscopic resolution with single-molecule imaging and active control. Annu Rev Biophys 2012 ; 41 : 321–342. [CrossRef] [PubMed] [Google Scholar]
  32. Schmidt R, Wurm CA, Jakobs S, et al. Spherical nanosized focal spot unravels the interior of cells. Nat Methods 2008 ; 5 : 539–544. [CrossRef] [PubMed] [Google Scholar]
  33. Sharonov A, Hochstrasser RM. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 2006 ; 103 : 18911–18916. [Google Scholar]
  34. Giannone G, Hosy E, Levet F, et al. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys J 2010 ; 99 : 1303–1310. [CrossRef] [PubMed] [Google Scholar]
  35. Löschberger A, van de Linde S, Dabauvalle MC, et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 2012 ; 125 : 570–575. [CrossRef] [PubMed] [Google Scholar]
  36. Izeddin I, Darzacq X, Dahan M. Microscopies cellulaires à l’échelle de la molécule individuelle - Représentation en sciences du vivant. Med Sci (Paris) 2011 ; 27 : 547–552. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Malkusch S, Muranyi W, Müller B, et al. Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem Cell Biol 2013 ; 139 : 173–179. [CrossRef] [PubMed] [Google Scholar]
  38. Kamiyama D, Huang B. Development in the STORM. Dev Cell 2012 ; 23 : 1103–1110. [CrossRef] [PubMed] [Google Scholar]
  39. Zhu L, Zhang W, Elnatan D, Huang B. Faster STORM using compressed sensing. Nat Methods 2012 ; 9 : 721–723. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.