Free Access
Med Sci (Paris)
Volume 30, Number 12, Décembre 2014
Page(s) 1161 - 1168
Section M/S Revues
Published online 24 December 2014
  1. Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science 1996 ; 274 : 546 : 63–67. [Google Scholar]
  2. Schatz G, Haslbrunner E, Tuppy H. Deoxyribonucleic acid associated with yeast mitochondria. Biochem Biophys Res Commun 1964 ; 15 : 127–132. [CrossRef] [PubMed] [Google Scholar]
  3. Dorée M. Prix Nobel de médecine de Médecine 2001 : Leland H. Hartwell, R. Timothy Hunt, Paul M. Nurse. Le cycle cellulaire couronné. Med Sci (Paris) 2001 ; 17 : 1055–1058. [Google Scholar]
  4. Galli T, Kuster A, Tareste D. Prix Nobel de Médecine 2013 James Rothman, Randy Schekman et Thomas Südhof. Une récompense pour la découverte des acteurs et des mécanismes moléculaires fondamentaux du trafic vésiculaire intracellulaire. Med Sci (Paris) 2013 ; 29 : 1055–1058. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Bassett DE, Jr., Boguski MS, Hieter P. Yeast genes and human disease. Nature 1996 ; 379 : 589–590. [CrossRef] [PubMed] [Google Scholar]
  6. Ishioka C, Frebourg T, Yan YX, et al. Screening patients for heterozygous p53 mutations using a functional assay in yeast. Nat Genet 1993 ; 5 : 124–129. [CrossRef] [PubMed] [Google Scholar]
  7. Szczebara FM, Chandelier C, Villeret C, et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 2003 ; 21 : 143–149. [CrossRef] [PubMed] [Google Scholar]
  8. Perocchi F, Mancera E, Steinmetz LM. Systematic screens for human disease genes, from yeast to human and back. Mol Biosyst 2008 ; 4 : 18–29. [CrossRef] [PubMed] [Google Scholar]
  9. Guiffant D, Tribouillard D, Gug F, et al. Identification of intracellular targets of small molecular weight chemical compounds using affinity chromatography. Biotechnol J 2007 ; 2 : 68–75. [CrossRef] [PubMed] [Google Scholar]
  10. St Onge R, Schlecht U, Scharfe C, Evangelista M. Forward chemical genetics in yeast for discovery of chemical probes targeting metabolism. Molecules 2012 ; 17 : 13098–13115. [CrossRef] [PubMed] [Google Scholar]
  11. Lenaers G, Amati-Bonneau P, Delettre C, et al. De la levure aux maladies neurodégénératives. Dix ans d’exploration des pathologies de la dynamique mitochondrial. Med Sci (Paris) 2010 ; 26 : 836–841. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Bonnefoy N, Fox TD. Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods Cell Biol 2001 ; 65 : 381–396. [CrossRef] [PubMed] [Google Scholar]
  13. Couplan E, Aiyar RS, Kucharczyk R, et al. A yeast-based assay identifies drugs active against human mitochondrial disorders. Proc Natl Acad Sci USA 2011 ; 108 : 11989–11994. [CrossRef] [Google Scholar]
  14. Aiyar RS, Bohnert M, Duvezin-Caubet S, et al. Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders. Nat Commun 2014 ; in press. [Google Scholar]
  15. Bach S, Talarek N, Andrieu T, et al. Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nat Biotechnol 2003 ; 21 : 1075–1081. [CrossRef] [PubMed] [Google Scholar]
  16. Bach S, Tribouillard D, Talarek N, et al. A yeast-based assay to isolate drugs active against mammalian prions. Methods 2006 ; 39 : 72–77. [CrossRef] [PubMed] [Google Scholar]
  17. Dormont D. Prix Nobel de Médecine : Stanley B. Prusiner - Un agent infectieux protéique ? Med Sci (Paris) 1997 ; 13 : 1375–1377. [CrossRef] [Google Scholar]
  18. Liautard JP, Alvarez-Martinez MT, Féraudet C, Torrent J. La protéine prion : structure, dynamique et conversion in vitro. Med Sci (Paris) 2002 ; 18 : 62–69. [CrossRef] [EDP Sciences] [Google Scholar]
  19. Prusiner SB, Scott MR, DeArmond SJ, Cohen FE. Prion protein biology. Cell 1998 ; 93 : 337–348. [CrossRef] [PubMed] [Google Scholar]
  20. Wickner RB. [URE3] as an altered URE2 protein : evidence for a prion analog in Saccharomyces cerevisiae. Science 1994 ; 264 : 566–569. [CrossRef] [PubMed] [Google Scholar]
  21. Prusiner SB. Prions. Proc Natl Acad Sci USA 1998 ; 95 : 13363–13383. [Google Scholar]
  22. Nguyen P, Oumata N, Soubigou F, et al. Evaluation of the antiprion activity of 6-aminophenanthridines and related heterocycles. Eur J Med Chem 2014 ; 82 : 363–371. [CrossRef] [PubMed] [Google Scholar]
  23. Nguyen PH, Hammoud H, Halliez S, et al. Structure-activity relationship study around guanabenz Identifies two derivatives retaining antiprion activity but having lost alpha2-adrenergic receptor agonistic activity. ACS Chem Neurosci 2014. [Google Scholar]
  24. Oumata N, Nguyen PH, Beringue V, et al. The toll-like receptor agonist imiquimod is active against prions. PLoS One 2013 ; 8 : e72112. [CrossRef] [PubMed] [Google Scholar]
  25. Tribouillard D, Bach S, Gug F, et al. Using budding yeast to screen for anti-prion drugs. Biotechnol J 2006 ; 1 : 58–67. [CrossRef] [PubMed] [Google Scholar]
  26. Tribouillard-Tanvier D, Beringue V, Desban N, et al. Antihypertensive drug guanabenz is active in vivo against both yeast, mammalian prions. PLoS One 2008 ; 3 : e1981. [CrossRef] [PubMed] [Google Scholar]
  27. Pang Y, Kurella S, Voisset C, et al. The antiprion compound 6-aminophenanthridine inhibits the protein folding activity of the ribosome by direct competition. J Biol Chem 2013 ; 288 : 19081–19089. [CrossRef] [PubMed] [Google Scholar]
  28. Tribouillard-Tanvier D, Dos Reis S, Gug F, et al. Protein folding activity of ribosomal RNA is a selective target of two unrelated antiprion drugs. PLoS One 2008 ; 3 : e2174. [CrossRef] [PubMed] [Google Scholar]
  29. Voisset C, Thuret JY, Tribouillard-Tanvier D, Saupe SJ, Blondel M. Tools for the study of ribosome-borne protein folding activity. Biotechnol J 2008 ; 3 : 1033–1040. [CrossRef] [PubMed] [Google Scholar]
  30. Epstein MA, Barr YM, Achong BG. A second virus-carrying tissue culture strain (Eb2) of lymphoblasts from Burkitt’s lymphoma. Pathol Biol (Paris) 1964 ; 12 : 1233–1234. [PubMed] [Google Scholar]
  31. Thorley-Lawson DA, Allday MJ. The curious case of the tumour virus : 50 years of Burkitt’s lymphoma. Nat Rev Microbiol 2008 ; 6 : 913–924. [CrossRef] [PubMed] [Google Scholar]
  32. Young LS, Rickinson AB. Epstein-Barr virus : 40 years on. Nat Rev Cancer 2004 ; 4 : 757–768. [CrossRef] [PubMed] [Google Scholar]
  33. Blake N. Immune evasion by gammaherpesvirus genome maintenance proteins. J Gen Virol 2010 ; 91 : 829–846. [CrossRef] [PubMed] [Google Scholar]
  34. Yin Y, Manoury B, Fahraeus R. Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 2003 ; 301 : 1371–1374. [CrossRef] [PubMed] [Google Scholar]
  35. Levitskaya J, Coram M, Levitsky V, et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 1995 ; 375 : 685–688. [CrossRef] [PubMed] [Google Scholar]
  36. Daskalogianni C, Pyndiah S, Apcher S, et al. Epstein-Barr virus-encoded EBNA1 and ZEBRA : targets for therapeutic strategies against EBV-carrying cancers. J Pathol 2014 Sept. 4. doi : 10.1002/path.4431 [Google Scholar]
  37. Voisset C, Daskalogianni C, Contesse MA, et al. A yeast-based assay identifies drugs that interfere with immune evasion of the Epstein-Barr virus. Dis Model Mech 2014 ; 7: 435–444. [CrossRef] [PubMed] [Google Scholar]
  38. Voisset C, Garcia-Rodriguez N, Birkmire A, Blondel M, Wellinger RE. Using yeast to model calcium-related diseases : example of the Hailey-Hailey disease. Biochim Biophys Acta 2014 ; 1843 : 2315–2321. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.