Free Access
Issue |
Med Sci (Paris)
Volume 30, Number 8-9, Août–Septembre 2014
|
|
---|---|---|
Page(s) | 797 - 802 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20143008019 | |
Published online | 01 September 2014 |
- Avram D, Fields A, Pretty On Top K, et al. Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J Biol Chem 2000 ; 275 : 10315–10322. [CrossRef] [PubMed] [Google Scholar]
- Kominami R. Role of the transcription factor Bcl11b in development and lymphomagenesis. Proc Jpn Acad Series B Phys Biol Sci 2012 ; 88 : 72–87. [CrossRef] [Google Scholar]
- Wakabayashi Y, Watanabe H, Inoue J, et al. Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol 2003 ; 4 : 533–539. [CrossRef] [PubMed] [Google Scholar]
- Liu P, Li P, Burke S. Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity. Immunol Rev 2010 ; 238 : 138–249. [CrossRef] [PubMed] [Google Scholar]
- Cavazzana-Calvo M, Six E, André-Schmutz I, Coulombel L. Hématopoïèse humaine : des cellules CD34 aux lymphocytes T. Med Sci (Paris) 2007 ; 23 : 151–159. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Ikawa T, Hirose S, Masuda K, et al. An essential developmental checkpoint for production of the T cell lineage. Science 2010 ; 329 : 93–96. [CrossRef] [PubMed] [Google Scholar]
- Li L, Leid M, Rothenberg E V. An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 2010 ; 329 : 89–93. [CrossRef] [PubMed] [Google Scholar]
- Li P, Burke S, Wang J, et al. Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 2010 ; 329 : 85–89. [CrossRef] [PubMed] [Google Scholar]
- Wang FX, Xu Y, Sullivan J, et al. IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J Clin Invest 2005 ; 115 : 128–137. [CrossRef] [PubMed] [Google Scholar]
- Cherrier T, Suzanne S, Redel L, et al. p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene 2009 ; 28 : 3380–3389. [CrossRef] [PubMed] [Google Scholar]
- Grabarczyk P, Przybylski GK, Depke M, et al. Inhibition of BCL11B expression leads to apoptosis of malignant but not normal mature T cells. Oncogene 2007 ; 26 : 3797–3810. [CrossRef] [PubMed] [Google Scholar]
- Arlotta P, Molyneaux BJ, Jabaudon D, et al. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci 2008 ; 28 : 622–632. [CrossRef] [PubMed] [Google Scholar]
- Topark-Ngarm A, Golonzhka O, Peterson VJ, et al. CTIP2 associates with the NuRD complex on the promoter of p57KIP2, a newly identified CTIP2 target gene. J Biol Chem 2006 ; 281 : 32272–32283. [CrossRef] [PubMed] [Google Scholar]
- Avram D, Fields A, Senawong T, et al. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein. Biochem J 2002 ; 368 : 555–563. [CrossRef] [PubMed] [Google Scholar]
- Cismasiu VB, Adamo K, Gecewicz J, et al. BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene 2005 ; 24 : 6753–6764. [CrossRef] [PubMed] [Google Scholar]
- Le Douce V, Colin L, Redel L, et al. LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing. Nucleic Acids Res 2011 ; 40 : 1904–1915. [CrossRef] [PubMed] [Google Scholar]
- Marban C, Suzanne S, Dequiedt F, et al. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 2007 ; 26 : 412–423. [CrossRef] [PubMed] [Google Scholar]
- Schwartz C, Douce V Le, Cherrier T, et al. Un virus tapi dans l’ombre : les bases moléculaires de la latence du VIH-1. Partie I : la physiologie de la latence du VIH-1. Med Sci (Paris) 2010 ; 26 : 159–163. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Cismasiu VB, Ghanta S, Duque J, et al. BCL11B participates in the activation of IL2 gene expression in CD4+ T lymphocytes. Blood 2006 ; 108 : 2695–2702. [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Vogel WK, Liu X, et al. Coordinated regulation of transcription factor Bcl11b activity in thymocytes by the mitogen-activated protein kinase (MAPK) pathways and protein sumoylation. J Biol Chem 2012 ; 287 : 26971–26988. [CrossRef] [PubMed] [Google Scholar]
- Muniz L, Kiss T, Egloff S. Perturbations de la transcription liées à une dérégulation de P-TEFb : cancer, Sida et hypertrophie cardiaque. Med Sci (Paris) 2012 ; 28 : 200–205. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Cherrier T, Douce V Le, Eilebrecht S, et al. CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci USA 2013 ; 110 : 12655–12660. [CrossRef] [Google Scholar]
- Cherrier T, Douce V Le, Redel L, et al. Un virus tapi dans l’ombre : les bases moléculaires de la latence du VIH-1. Partie II : la réactivation de la latence du VIH-1 et ses implications thérapeutiques. Med Sci (Paris) 2010 ; 26 : 291–295. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Desplats P, Dumaop W, Smith D, et al. Molecular and pathologic insights from latent HIV-1. Neurology 2013 ; 80 : 1415–1423. [CrossRef] [PubMed] [Google Scholar]
- Van Lint C, Bouchat S, Marcello A.. HIV-1 transcription, latency: an update. Retrovirology 2013 ; 10 : 67. [CrossRef] [PubMed] [Google Scholar]
- Vanvalkenburgh J, Albu DI, Bapanpally C, et al. Critical role of Bcl11b in suppressor function of T regulatory cells and prevention of inflammatory bowel disease. J Exp Med 2011 ; 208 : 2069–2081. [CrossRef] [PubMed] [Google Scholar]
- Cismasiu VB, Duque J, Paskaleva E, et al. BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes. Biochem J 2009 ; 417 : 457–466. [CrossRef] [PubMed] [Google Scholar]
- Wang Z, Zhang LJ, Guha G, et al. Selective ablation of Ctip2/Bcl11b in epidermal keratinocytes triggers atopic dermatitis-like skin inflammatory responses in adult mice. PloS One 2012 ; 7 : e51262 [CrossRef] [PubMed] [Google Scholar]
- Huang X, Du X, Li Y.. The role of BCL11B in hematological malignancy. Exp Hematol Oncol 2012 ; 1 : 22. [CrossRef] [PubMed] [Google Scholar]
- Wiles ET, Lui-Sargent B, Bell R, et al. BCL11B is up-regulated by EWS/FLI, contributes to the transformed phenotype in Ewing sarcoma. PloS One 2013 ; 8 : e59369. [CrossRef] [PubMed] [Google Scholar]
- Qian X, Hulit J, Suyama K, et al. p21CIP1 mediates reciprocal switching between proliferation and invasion during metastasis. Oncogene 2013 ; 32 : 2292–2303. [CrossRef] [PubMed] [Google Scholar]
- Laurent S, Alivon M, Beaussier H, et al. Aortic stiffness as a tissue biomarker for predicting future cardiovascular events in asymptomatic hypertensive subjects. Ann Med 2012 ; 44 (suppl 1) : S93–S97. [CrossRef] [PubMed] [Google Scholar]
- Mitchell GF, Verwoert GC, Tarasov KV, et al. Common genetic variation in the 3’-BCL11B gene desert is associated with carotid-femoral pulse wave velocity and excess cardiovascular disease risk: the AortaGen Consortium. Circ Cardiovasc Genet 2012 ; 5 : 81–90. [CrossRef] [PubMed] [Google Scholar]
- Pereira FA, Qiu Y, Zhou G, et al. The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 1999 ; 13 : 1037–1049. [CrossRef] [PubMed] [Google Scholar]
- Le Douce V, Cherrier T, Riclet R, et al. The many lives of CTIP2: from AIDS to cancer and cardiac hypertrophy. J Cell Physiol 2014 ; 229 : 533–537. [CrossRef] [PubMed] [Google Scholar]
- Huang X, Chen S, Shen Q, et al. Down regulation of BCL11B expression inhibits proliferation and induces apoptosis in malignant T cells by BCL11B–935-siRNA. Hematology 2011 ; 16 : 236–242. [CrossRef] [PubMed] [Google Scholar]
- Svoboda M, Poprach A, Dobes S, et al. Cardiac toxicity of targeted therapies used in the treatment for solid tumours: a review. Cardiovasc Toxicol 2012 ; 12 : 191–207. [CrossRef] [PubMed] [Google Scholar]
- Chaib H, Nebbioso A, Prebet T, et al. Anti-Leukemia Activity Of Chaetocin Via Death Receptor-Dependent Apoptosis And Dual Modulation Of The Histone Methyl-Transferase Suv39h1. Leukemia 2012 ; 26 : 662–674. [CrossRef] [PubMed] [Google Scholar]
- Le Douce V, Janossy A, Hallay H, et al. Achieving A Cure For Hiv Infection: Do We Have Reasons To Be Optimistic? J Antimicrob Chemother 2012 ; 67 : 1063–1074. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.