Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 8-9, Août–Septembre 2014
Page(s) 797 - 802
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143008019
Publié en ligne 1 septembre 2014
  1. Avram D, Fields A, Pretty On Top K, et al. Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J Biol Chem 2000 ; 275 : 10315–10322. [CrossRef] [PubMed] [Google Scholar]
  2. Kominami R. Role of the transcription factor Bcl11b in development and lymphomagenesis. Proc Jpn Acad Series B Phys Biol Sci 2012 ; 88 : 72–87. [CrossRef] [Google Scholar]
  3. Wakabayashi Y, Watanabe H, Inoue J, et al. Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol 2003 ; 4 : 533–539. [CrossRef] [PubMed] [Google Scholar]
  4. Liu P, Li P, Burke S. Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity. Immunol Rev 2010 ; 238 : 138–249. [CrossRef] [PubMed] [Google Scholar]
  5. Cavazzana-Calvo M, Six E, André-Schmutz I, Coulombel L. Hématopoïèse humaine : des cellules CD34 aux lymphocytes T. Med Sci (Paris) 2007 ; 23 : 151–159. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Ikawa T, Hirose S, Masuda K, et al. An essential developmental checkpoint for production of the T cell lineage. Science 2010 ; 329 : 93–96. [CrossRef] [PubMed] [Google Scholar]
  7. Li L, Leid M, Rothenberg E V. An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 2010 ; 329 : 89–93. [CrossRef] [PubMed] [Google Scholar]
  8. Li P, Burke S, Wang J, et al. Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 2010 ; 329 : 85–89. [CrossRef] [PubMed] [Google Scholar]
  9. Wang FX, Xu Y, Sullivan J, et al. IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J Clin Invest 2005 ; 115 : 128–137. [CrossRef] [PubMed] [Google Scholar]
  10. Cherrier T, Suzanne S, Redel L, et al. p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene 2009 ; 28 : 3380–3389. [CrossRef] [PubMed] [Google Scholar]
  11. Grabarczyk P, Przybylski GK, Depke M, et al. Inhibition of BCL11B expression leads to apoptosis of malignant but not normal mature T cells. Oncogene 2007 ; 26 : 3797–3810. [CrossRef] [PubMed] [Google Scholar]
  12. Arlotta P, Molyneaux BJ, Jabaudon D, et al. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci 2008 ; 28 : 622–632. [CrossRef] [PubMed] [Google Scholar]
  13. Topark-Ngarm A, Golonzhka O, Peterson VJ, et al. CTIP2 associates with the NuRD complex on the promoter of p57KIP2, a newly identified CTIP2 target gene. J Biol Chem 2006 ; 281 : 32272–32283. [CrossRef] [PubMed] [Google Scholar]
  14. Avram D, Fields A, Senawong T, et al. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein. Biochem J 2002 ; 368 : 555–563. [CrossRef] [PubMed] [Google Scholar]
  15. Cismasiu VB, Adamo K, Gecewicz J, et al. BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene 2005 ; 24 : 6753–6764. [CrossRef] [PubMed] [Google Scholar]
  16. Le Douce V, Colin L, Redel L, et al. LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing. Nucleic Acids Res 2011 ; 40 : 1904–1915. [CrossRef] [PubMed] [Google Scholar]
  17. Marban C, Suzanne S, Dequiedt F, et al. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 2007 ; 26 : 412–423. [CrossRef] [PubMed] [Google Scholar]
  18. Schwartz C, Douce V Le, Cherrier T, et al. Un virus tapi dans l’ombre : les bases moléculaires de la latence du VIH-1. Partie I : la physiologie de la latence du VIH-1. Med Sci (Paris) 2010 ; 26 : 159–163. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Cismasiu VB, Ghanta S, Duque J, et al. BCL11B participates in the activation of IL2 gene expression in CD4+ T lymphocytes. Blood 2006 ; 108 : 2695–2702. [CrossRef] [PubMed] [Google Scholar]
  20. Zhang L, Vogel WK, Liu X, et al. Coordinated regulation of transcription factor Bcl11b activity in thymocytes by the mitogen-activated protein kinase (MAPK) pathways and protein sumoylation. J Biol Chem 2012 ; 287 : 26971–26988. [CrossRef] [PubMed] [Google Scholar]
  21. Muniz L, Kiss T, Egloff S. Perturbations de la transcription liées à une dérégulation de P-TEFb : cancer, Sida et hypertrophie cardiaque. Med Sci (Paris) 2012 ; 28 : 200–205. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Cherrier T, Douce V Le, Eilebrecht S, et al. CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci USA 2013 ; 110 : 12655–12660. [CrossRef] [Google Scholar]
  23. Cherrier T, Douce V Le, Redel L, et al. Un virus tapi dans l’ombre : les bases moléculaires de la latence du VIH-1. Partie II : la réactivation de la latence du VIH-1 et ses implications thérapeutiques. Med Sci (Paris) 2010 ; 26 : 291–295. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Desplats P, Dumaop W, Smith D, et al. Molecular and pathologic insights from latent HIV-1. Neurology 2013 ; 80 : 1415–1423. [CrossRef] [PubMed] [Google Scholar]
  25. Van Lint C, Bouchat S, Marcello A.. HIV-1 transcription, latency: an update. Retrovirology 2013 ; 10 : 67. [CrossRef] [PubMed] [Google Scholar]
  26. Vanvalkenburgh J, Albu DI, Bapanpally C, et al. Critical role of Bcl11b in suppressor function of T regulatory cells and prevention of inflammatory bowel disease. J Exp Med 2011 ; 208 : 2069–2081. [CrossRef] [PubMed] [Google Scholar]
  27. Cismasiu VB, Duque J, Paskaleva E, et al. BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes. Biochem J 2009 ; 417 : 457–466. [CrossRef] [PubMed] [Google Scholar]
  28. Wang Z, Zhang LJ, Guha G, et al. Selective ablation of Ctip2/Bcl11b in epidermal keratinocytes triggers atopic dermatitis-like skin inflammatory responses in adult mice. PloS One 2012 ; 7 : e51262 [CrossRef] [PubMed] [Google Scholar]
  29. Huang X, Du X, Li Y.. The role of BCL11B in hematological malignancy. Exp Hematol Oncol 2012 ; 1 : 22. [CrossRef] [PubMed] [Google Scholar]
  30. Wiles ET, Lui-Sargent B, Bell R, et al. BCL11B is up-regulated by EWS/FLI, contributes to the transformed phenotype in Ewing sarcoma. PloS One 2013 ; 8 : e59369. [CrossRef] [PubMed] [Google Scholar]
  31. Qian X, Hulit J, Suyama K, et al. p21CIP1 mediates reciprocal switching between proliferation and invasion during metastasis. Oncogene 2013 ; 32 : 2292–2303. [CrossRef] [PubMed] [Google Scholar]
  32. Laurent S, Alivon M, Beaussier H, et al. Aortic stiffness as a tissue biomarker for predicting future cardiovascular events in asymptomatic hypertensive subjects. Ann Med 2012 ; 44 (suppl 1) : S93–S97. [CrossRef] [PubMed] [Google Scholar]
  33. Mitchell GF, Verwoert GC, Tarasov KV, et al. Common genetic variation in the 3’-BCL11B gene desert is associated with carotid-femoral pulse wave velocity and excess cardiovascular disease risk: the AortaGen Consortium. Circ Cardiovasc Genet 2012 ; 5 : 81–90. [CrossRef] [PubMed] [Google Scholar]
  34. Pereira FA, Qiu Y, Zhou G, et al. The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 1999 ; 13 : 1037–1049. [CrossRef] [PubMed] [Google Scholar]
  35. Le Douce V, Cherrier T, Riclet R, et al. The many lives of CTIP2: from AIDS to cancer and cardiac hypertrophy. J Cell Physiol 2014 ; 229 : 533–537. [CrossRef] [PubMed] [Google Scholar]
  36. Huang X, Chen S, Shen Q, et al. Down regulation of BCL11B expression inhibits proliferation and induces apoptosis in malignant T cells by BCL11B–935-siRNA. Hematology 2011 ; 16 : 236–242. [CrossRef] [PubMed] [Google Scholar]
  37. Svoboda M, Poprach A, Dobes S, et al. Cardiac toxicity of targeted therapies used in the treatment for solid tumours: a review. Cardiovasc Toxicol 2012 ; 12 : 191–207. [CrossRef] [PubMed] [Google Scholar]
  38. Chaib H, Nebbioso A, Prebet T, et al. Anti-Leukemia Activity Of Chaetocin Via Death Receptor-Dependent Apoptosis And Dual Modulation Of The Histone Methyl-Transferase Suv39h1. Leukemia 2012 ; 26 : 662–674. [CrossRef] [PubMed] [Google Scholar]
  39. Le Douce V, Janossy A, Hallay H, et al. Achieving A Cure For Hiv Infection: Do We Have Reasons To Be Optimistic? J Antimicrob Chemother 2012 ; 67 : 1063–1074. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.