Accès gratuit
Med Sci (Paris)
Volume 30, Numéro 8-9, Août–Septembre 2014
Page(s) 790 - 796
Section M/S Revues
Publié en ligne 1 septembre 2014
  1. Derrien T, Guigo R, Johnson R.. The long non-coding RNAs: A new (p)layer in the dark matter. Front Genet 2011 ; 2 : 107. [PubMed] [Google Scholar]
  2. Hu W, Alvarez-Dominguez JR, Lodish HF. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 2012 ; 13 : 971–983. [CrossRef] [PubMed] [Google Scholar]
  3. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell 2013 ; 154 : 26–46. [CrossRef] [PubMed] [Google Scholar]
  4. Shi X, Sun M, Liu H, et al. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 2013 ; 339 : 159–166. [CrossRef] [PubMed] [Google Scholar]
  5. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011 ; 12 : 861–874. [CrossRef] [PubMed] [Google Scholar]
  6. Koerner MV, Pauler FM, Huang R, Barlow DP. The function of non-coding RNAs in genomic imprinting. Development 2009 ; 136 : 1771–1783. [CrossRef] [PubMed] [Google Scholar]
  7. Lepoivre C, Belhocine M, Bergon A, et al. Divergent transcription is associated with promoters of transcriptional regulators. BMC Genomics 2013 ; 14 : 914. [CrossRef] [PubMed] [Google Scholar]
  8. Kelley DR, Transposable Rinn JL.. elements reveal a stem cell specific class of long noncoding RNAs. Genome Biol 2012 ; 13 : R107. [CrossRef] [PubMed] [Google Scholar]
  9. Kapusta A, Kronenberg Z, Lynch VJ, et al. Transposable elements are major contributors to the origin, diversification, regulation of vertebrate long noncoding RNAs. PLoS Genet 2013 ; 9 : e1003470. [CrossRef] [PubMed] [Google Scholar]
  10. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature 2012 ; 482 : 339–346. [CrossRef] [PubMed] [Google Scholar]
  11. Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009 ; 458 : 223–227. [CrossRef] [PubMed] [Google Scholar]
  12. Spicuglia S, Maqbool MA, Puthier D, Andrau JC. An update on recent methods applied for deciphering the diversity of the noncoding RNA genome structure and function. Methods 2013 ; 63 : 3–17. [CrossRef] [PubMed] [Google Scholar]
  13. Derrien T, Guigo R. De longs ARN non codants activateurs de la transcription des gènes. Med Sci (Paris) 2011 ; 27 : 359–361. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012 ; 22 : 1775–1789. [CrossRef] [PubMed] [Google Scholar]
  15. Yang L, Froberg JE, Lee JT. Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem Sci 2014 ; 39 : 35–43. [CrossRef] [PubMed] [Google Scholar]
  16. Orom UA, Shiekhattar R. Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 2013 ; 154 : 1190–1193. [CrossRef] [PubMed] [Google Scholar]
  17. Lee JT. Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 2011 ; 12 : 815–826. [CrossRef] [PubMed] [Google Scholar]
  18. Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007 ; 129 : 1311–1323. [CrossRef] [PubMed] [Google Scholar]
  19. Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010 ; 329 : 689–693. [CrossRef] [PubMed] [Google Scholar]
  20. Bertani S, Sauer S, Bolotin E, Sauer F. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 2011 ; 43 : 1040–1046. [CrossRef] [PubMed] [Google Scholar]
  21. Wang KC, Yang YW, Liu B, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011 ; 472 : 120–124. [CrossRef] [PubMed] [Google Scholar]
  22. Carrieri C, Cimatti L, Biagioli M, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 2012 ; 491 : 454–457. [CrossRef] [PubMed] [Google Scholar]
  23. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013 ; 495 : 333–338. [CrossRef] [PubMed] [Google Scholar]
  24. Spicuglia S, Zacarias-Cabeza J, Pekowska P, Ferrier P.. Epigenetic regulation of antigen receptor gene rearrangement. F1000 Biol Rep 2010 ; 2 : 23. [PubMed] [Google Scholar]
  25. Kogo R, Shimamura T, Mimori K, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 2011 ; 71 : 6320–6326. [CrossRef] [PubMed] [Google Scholar]
  26. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010 ; 464 : 1071–1076. [CrossRef] [PubMed] [Google Scholar]
  27. Panzitt K, Tschernatsch MM, Guelly C, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 2007 ; 132 : 330–342. [CrossRef] [PubMed] [Google Scholar]
  28. Fradet Y, Saad F, Aprikian A, et al. uPM3, a new molecular urine test for the detection of prostate cancer. Urology 2004 ; 64 : 311–316. [CrossRef] [PubMed] [Google Scholar]
  29. Ferreira LB, Palumbo A, de Mello KD, et al. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival, modulates androgen receptor signaling. BMC Cancer 2012 ; 12 : 507. [CrossRef] [PubMed] [Google Scholar]
  30. Yuan SX, Yang F, Yang Y, et al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology 2012 ; 56 : 2231–241. [CrossRef] [PubMed] [Google Scholar]
  31. Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010 ; 142 : 409–419. [CrossRef] [PubMed] [Google Scholar]
  32. Zhou Y, Zhong Y, Wang Y, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem 2007 ; 282 : 24731–24742. [CrossRef] [PubMed] [Google Scholar]
  33. Pasmant E, Laurendeau I, Sabbagh A, et al. ANRIL ou l’étrange histoire d’un grand ARN non codant. Med Sci (Paris) 2010 ; 26 : 564–566. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Holdt LM, Beutner F, Scholz M, et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 2010 ; 30 : 620–627. [CrossRef] [PubMed] [Google Scholar]
  35. Liu Y, Sanoff HK, Cho H, et al. INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS One 2009 ; 4 : e5027. [CrossRef] [PubMed] [Google Scholar]
  36. Modarresi F, Faghihi MA, Lopez-Toledano MA, et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 2012 ; 30 : 453–459. [CrossRef] [PubMed] [Google Scholar]
  37. Tong YK, Lo YM. Diagnostic developments involving cell-free (circulating) nucleic acids. Clin Chim Acta 2006 ; 363 : 187–196. [CrossRef] [PubMed] [Google Scholar]
  38. Adams D, Altucci L, Antonarakis SE, et al. Blueprint to decode the epigenetic signature written in blood. Nat Biotechnol 2012 ; 30 : 224–226. [CrossRef] [PubMed] [Google Scholar]
  39. Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011 ; 147 : 358–369. [CrossRef] [PubMed] [Google Scholar]
  40. Faghihi MA, Modarresi F, Khalil AM, et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 2008 ; 14 : 723–730. [CrossRef] [PubMed] [Google Scholar]
  41. Cabianca DS, Casa V, Bodega B, et al. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 2012 ; 149 : 819–831. [CrossRef] [PubMed] [Google Scholar]
  42. Temple IK, Shield JP. Transient neonatal diabetes, a disorder of imprinting. J Med Genet 2002 ; 39 : 872–875. [CrossRef] [PubMed] [Google Scholar]
  43. Ji P, Diederichs S, Wang W, et al. Malat-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003 ; 22 : 8031–8041. [CrossRef] [PubMed] [Google Scholar]
  44. Yamada K, Kano J, Tsunoda H, et al. Phenotypic characterization of endometrial stromal sarcoma of the uterus. Cancer Sci 2006 ; 97 : 106–112. [CrossRef] [PubMed] [Google Scholar]
  45. Lin R, Maeda S, Liu C, et al. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 2007 ; 26 : 851–858. [CrossRef] [PubMed] [Google Scholar]
  46. Abel Y, Clerget G, Bourguignon-Igel V, et al. Les petits ARN nucléolaires nous surprennent encore ! Med Sci (Paris) 2014 ; 30 : 297–302. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.