Free Access
Issue
Med Sci (Paris)
Volume 30, Number 6-7, Juin–Juillet 2014
Page(s) 693 - 698
Section Forum
DOI https://doi.org/10.1051/medsci/20143006023
Published online 11 July 2014
  1. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature 2013 ; 502 : 333–339. [CrossRef] [PubMed] [Google Scholar]
  2. Watson IR, Takahashi K, Futreal PA, Chin L. Emerging patterns of somatic mutations in cancer. Nat Rev Genet 2013 ; 14 : 703–718. [CrossRef] [PubMed] [Google Scholar]
  3. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature 2013 ; 500 : 415–421. [CrossRef] [PubMed] [Google Scholar]
  4. Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science 2013 ; 339 : 1546–1558. [Google Scholar]
  5. Stephens PJ, Tarpey PS, Davies H, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 2012 ; 486 : 400–404. [CrossRef] [PubMed] [Google Scholar]
  6. Shah SP, Roth A, Goya R, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 2012 ; 486 : 395–399. [PubMed] [Google Scholar]
  7. Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature 2011 ; 472 : 90–94. [CrossRef] [PubMed] [Google Scholar]
  8. Anderson K, Lutz C, van Delft FW, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2010 ; 469 : 356–361. [Google Scholar]
  9. Xu X, Hou Y, Yin X, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 2012 ; 148 : 886–895. [CrossRef] [PubMed] [Google Scholar]
  10. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006 ; 7 : 21–33. [CrossRef] [PubMed] [Google Scholar]
  11. Plass C, Pfister SM, Lindroth AM, et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet 2013 ; 14 : 765–780. [CrossRef] [PubMed] [Google Scholar]
  12. Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell 2013 ; 153 : 38–55. [CrossRef] [PubMed] [Google Scholar]
  13. Landan G, Cohen NM, Mukamel Z, et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat Genet 2012 ; 44 : 1207–1214. [CrossRef] [PubMed] [Google Scholar]
  14. Efroni S, Duttagupta R, Cheng J, et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2008 ; 2 : 437–447. [CrossRef] [PubMed] [Google Scholar]
  15. Brown CR, Mao C, Falkovskaia E, et al. Linking stochastic fluctuations in chromatin structure, gene expression. PLoS Biol 2013 ; 11 : e1001621. [CrossRef] [PubMed] [Google Scholar]
  16. Sanchez A, Golding I. Genetic determinants and cellular constraints in noisy gene expression. Science 2013 ; 342 : 1188–1193. [CrossRef] [PubMed] [Google Scholar]
  17. Kreso A, O’Brien CA, van Galen P, et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 2012 ; 339 : 543–548. [Google Scholar]
  18. Gupta PB, Fillmore CM, Jiang G, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011 ; 146 : 633–644. [CrossRef] [PubMed] [Google Scholar]
  19. Rosen JM, Jordan CT. The increasing complexity of the cancer stem cell paradigm. Science 2009 ; 324 : 1670–1673. [CrossRef] [PubMed] [Google Scholar]
  20. Quintana E, Shackleton M, Sabel MS, et al. Efficient tumour formation by single human melanoma cells. Nature 2008 ; 456 : 593–598. [CrossRef] [PubMed] [Google Scholar]
  21. Roesch A, Fukunaga-Kalabis M, Schmidt EC, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 2010 ; 141 : 583–594. [CrossRef] [PubMed] [Google Scholar]
  22. Little SC, Tikhonov M, Gregor T. Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell 2013 ; 154 : 789–800. [CrossRef] [PubMed] [Google Scholar]
  23. Ohnishi Y, Huber W, Tsumura A, et al. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat Cell Biol 2014 ; 16 : 27–37. [CrossRef] [PubMed] [Google Scholar]
  24. Featherstone K, Harper CV, McNamara A, et al. Pulsatile patterns of pituitary hormone gene expression change during development. J Cell Sci 2011 ; 124 : 3484–3491. [CrossRef] [PubMed] [Google Scholar]
  25. MacArthur BD, Lemischka IR. Statistical mechanics of pluripotency. Cell 2013 ; 154 : 484–489. [CrossRef] [PubMed] [Google Scholar]
  26. Kupiec JJ. L’origine des individus. Paris : Fayard, 2008 : 315 p. [Google Scholar]
  27. Stergachis AB, Neph S, Reynolds A, et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 2013 ; 154 : 888–903. [CrossRef] [PubMed] [Google Scholar]
  28. Capp JP. Stochastic gene expression, disruption of tissue averaging effects and cancer as a disease of development. Bioessays 2005 ; 27 : 1277–1285. [CrossRef] [PubMed] [Google Scholar]
  29. Capp JP. Nouveau regard sur le cancer. Pour une révolution des traitements. Paris : Belin, 2012 : 256 p. [Google Scholar]
  30. Capp JP. Stochastic gene expression stabilization as a new therapeutic strategy for cancer. Bioessays 2012 ; 34 : 170–173. [CrossRef] [PubMed] [Google Scholar]
  31. Solary E. Une approche réductionniste du cancer. Med Sci (Paris) 2014 ; 30 : 683–687. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Kupiec JJ. Comment le hasard intervient-il dans le débat entre holisme et réductionnisme ? Conclusion du dossier Cancer/Haredhol. Med Sci (Paris) 2014 ; 30 : 699–700. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Sonnenschein C, Soto AM. Le cancer et ses gènes insaisissables. Med Sci (Paris) 2014 ; 30 : 688–692. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.