Free Access
Issue |
Med Sci (Paris)
Volume 30, Number 6-7, Juin–Juillet 2014
|
|
---|---|---|
Page(s) | 637 - 643 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20143006013 | |
Published online | 11 July 2014 |
- Ogden JA., Trouble in mind: Stories from a neuropsychologist’s casebook. New York: Oxford University Press, 2012. [Google Scholar]
- Curcio CA, Sloan KR, Kalina RE, et al. Human photoreceptor topography. J Comp Neurol 1990 ; 292 : 497–523. [CrossRef] [PubMed] [Google Scholar]
- Carrasco M. Visual attention: the past 25 years. Vision Res 2011 ; 51 : 1484–1525. [CrossRef] [PubMed] [Google Scholar]
- Thiebaut de Schotten M. L’étude des connexions cérébrales révèle les bases anatomiques de la dominance de l’hémisphère droit pour l’attention spatiale. Med Sci (Paris) 2012 ; 28 : 21–23. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Wardak C, Duhamel J-R. Contrôle du mouvement du regard (1)–Le rôle du cortex pariétal. Med Sci (Paris) 2004 ; 20 : 89–97. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Grosbras M-H, Lobel E, Berthoz A. Contrôle du mouvement du regard (2)–Imagerie fonctionnelle cérébrale des saccades volontaires. Med Sci (Paris) 2004 ; 20 : 225–230. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Filali-Sadouk N, Castet E, Olivier E, et al. Similar effect of cueing conditions on attentional and saccadic temporal dynamics. J Vis 2010 ; 10 : 211–213. [CrossRef] [Google Scholar]
- Rizzolatti G, Riggio L, Dascola I. Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia 1987 ; 25 : 31–40. [CrossRef] [PubMed] [Google Scholar]
- Kustov AA, Robinson DL. Shared neural control of attentional shifts and eye movements. Nature 1996 ; 384 : 74–77. [CrossRef] [PubMed] [Google Scholar]
- Blangero A, Khan A, Salemme R, et al. Pre-saccadic perceptual facilitation can occur without covert orienting of attention. Cortex 2010 ; 46 : 1132–1137. [CrossRef] [PubMed] [Google Scholar]
- Juan C-H, Shorter-Jacobi SM, Schall JD. Dissociation of spatial attention and saccade preparation. Proc Natl Acad Sci USA 2004 ; 101 : 15541–15544. [CrossRef] [Google Scholar]
- Sprague JM, Meikle TH. The role of the superior colliculus in visually guide behavior. Exp Neurol 1965 ; 11 : 115–146. [CrossRef] [PubMed] [Google Scholar]
- Sprague JM. Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 1966 ; 153 : 1544–1547. [CrossRef] [PubMed] [Google Scholar]
- Durmer JS, Rosenquist AC. Ibotenic acid lesions in the pedunculopontine region result in recovery of visual orienting in the hemianopic cat. Neuroscience 2001 ; 106 : 765–781. [CrossRef] [PubMed] [Google Scholar]
- Ignashchenkova A, Dicke PW, Haarmeier T, et al. Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat Neurosci 2003 ; 7 : 56–64. [CrossRef] [PubMed] [Google Scholar]
- Lovejoy LP, Krauzlis RJ. Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nat Neurosci 2010 ; 13 : 261–266. [CrossRef] [PubMed] [Google Scholar]
- Zénon A, Krauzlis RJ. Attention deficits without cortical neuronal deficits. Nature 2012 ; 489 : 434–437. [CrossRef] [PubMed] [Google Scholar]
- Reynolds JH, Chelazzi L. Attentional modulation of visual processing. Annu Rev Neurosci 2004 ; 27 : 611–647. [CrossRef] [PubMed] [Google Scholar]
- Krauzlis R, Lovejoy LP, Zénon A. Superior colliculus and visual spatial attention. Annu Rev Neurosci 2013 ; 36 : 165–182. [CrossRef] [PubMed] [Google Scholar]
- Redgrave P, Prescott TJ, Gurney K. The basal ganglia: a vertebrate solution to the selection problem?. Neuroscience 1999 ; 89 : 1009–1023. [CrossRef] [PubMed] [Google Scholar]
- McHaffie JG, Stanford TR, Stein BE, et al. Subcortical loops through the basal ganglia. Trends Neurosci 2005 ; 28 : 401–407. [CrossRef] [PubMed] [Google Scholar]
- Selemon LD, Goldman-Rakic PS. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 1988 ; 8 : 4049–4068. [PubMed] [Google Scholar]
- Karnath H-O. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 2002 ; 125 : 350–360. [CrossRef] [PubMed] [Google Scholar]
- Miyashita N, Hikosaka O, Kato M. Visual hemineglect induced by unilateral striatal dopamine deficiency in monkeys. Neuroreport 1995 ; 6 : 1257–1260. [CrossRef] [PubMed] [Google Scholar]
- Ding L, Gold JI. Separate, causal roles of the Caudate in saccadic choice and execution in a perceptual decision task. Neuron 2012 ; 75 : 865–874. [CrossRef] [PubMed] [Google Scholar]
- Hikosaka O. Basal ganglia mechanisms of reward-oriented eye movement. Ann New York Acad Sci 2007 ; 1104 : 229–249. [CrossRef] [Google Scholar]
- Shires J, Joshi S, Basso MA. Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements. Curr Opin Neurobiol 2010 ; 20 : 717–725. [CrossRef] [PubMed] [Google Scholar]
- Hayhoe M, Ballard D. Eye movements in natural behavior. Trends Cogn Sci 2005 ; 9 : 188–194. [CrossRef] [PubMed] [Google Scholar]
- Chun MM. Contextual cueing of visual attention. Trends Cogn Sci 2000 ; 4 : 170–178. [CrossRef] [PubMed] [Google Scholar]
- Yantis S, Jonides J. Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. J Exp Psychol Hum Percept Perform 1990 ; 16 : 121–134. [CrossRef] [PubMed] [Google Scholar]
- Lynch JC, Tian J-R. Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res 2006 ; 151 : 461–501. [CrossRef] [PubMed] [Google Scholar]
- Schall JD, Morel A, King DJ, et al. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 1995 ; 15 : 4464–4487. [PubMed] [Google Scholar]
- Robinson DA. Eye movements evoked by collicular stimulation in the alert monkey. Vision Res 1972 ; 12 : 1795–1808. [CrossRef] [PubMed] [Google Scholar]
- Munoz DP, Wurtz RH. Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J Neurophysiol 1995 ; 73 : 2313–2333. [PubMed] [Google Scholar]
- Moschovakis AK, Scudder CA, Highstein SM. The microscopic anatomy and physiology of the mammalian saccadic system. Prog Neurobiol 1996 ; 50 : 133–254. [CrossRef] [PubMed] [Google Scholar]
- Olivier E, Chat M, Grantyn A. Rostrocaudal and lateromedial density distributions of superior colliculus neurons projecting in the predorsal bundle and to the spinal cord: a retrograde HRP study in the cat. Exp Brain Res 1991 ; 87 : 268–282. [CrossRef] [PubMed] [Google Scholar]
- Corneil BD, Olivier E, Munoz DP. Neck muscle responses to stimulation of monkey superior colliculus. I. Topography and manipulation of stimulation parameters. J Neurophysiol 2002 ; 88 : 1980–1999. [PubMed] [Google Scholar]
- Van Essen DC. Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LM, Werner JS, eds. Visual neurosciences. Cambridge: MIT Press, 2003 : 507–521. [Google Scholar]
- Mountcastle VB, Motter BC, Steinmetz MA, Sestokas AK. Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey. J Neurosci 1987 ; 7 : 2239–2257. [PubMed] [Google Scholar]
- Mitchell JF, Sundberg KA, Reynolds JH. Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 2007 ; 55 : 131–141. [CrossRef] [PubMed] [Google Scholar]
- Mitchell JF, Sundberg KA, Reynolds JH. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 2009 ; 63 : 879–888. [CrossRef] [PubMed] [Google Scholar]
- Bair W, Zohary E, Newsome WT. Correlated firing in macaque visual area MT: Time scales and relationship to behavior. J Neurosci 2001 ; 21 : 1676–1697. [PubMed] [Google Scholar]
- Treue S, Maunsell JHR. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 1996 ; 382 : 539–541. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.