Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 6-7, Juin–Juillet 2014
Page(s) 637 - 643
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143006013
Publié en ligne 11 juillet 2014
  1. Ogden JA., Trouble in mind: Stories from a neuropsychologist’s casebook. New York: Oxford University Press, 2012.
  2. Curcio CA, Sloan KR, Kalina RE, et al. Human photoreceptor topography. J Comp Neurol 1990 ; 292 : 497–523. [CrossRef] [PubMed]
  3. Carrasco M. Visual attention: the past 25 years. Vision Res 2011 ; 51 : 1484–1525. [CrossRef] [PubMed]
  4. Thiebaut de Schotten M. L’étude des connexions cérébrales révèle les bases anatomiques de la dominance de l’hémisphère droit pour l’attention spatiale. Med Sci (Paris) 2012 ; 28 : 21–23. [CrossRef] [EDP Sciences] [PubMed]
  5. Wardak C, Duhamel J-R. Contrôle du mouvement du regard (1)–Le rôle du cortex pariétal. Med Sci (Paris) 2004 ; 20 : 89–97. [CrossRef] [EDP Sciences] [PubMed]
  6. Grosbras M-H, Lobel E, Berthoz A. Contrôle du mouvement du regard (2)–Imagerie fonctionnelle cérébrale des saccades volontaires. Med Sci (Paris) 2004 ; 20 : 225–230. [CrossRef] [EDP Sciences] [PubMed]
  7. Filali-Sadouk N, Castet E, Olivier E, et al. Similar effect of cueing conditions on attentional and saccadic temporal dynamics. J Vis 2010 ; 10 : 211–213. [CrossRef]
  8. Rizzolatti G, Riggio L, Dascola I. Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia 1987 ; 25 : 31–40. [CrossRef] [PubMed]
  9. Kustov AA, Robinson DL. Shared neural control of attentional shifts and eye movements. Nature 1996 ; 384 : 74–77. [CrossRef] [PubMed]
  10. Blangero A, Khan A, Salemme R, et al. Pre-saccadic perceptual facilitation can occur without covert orienting of attention. Cortex 2010 ; 46 : 1132–1137. [CrossRef] [PubMed]
  11. Juan C-H, Shorter-Jacobi SM, Schall JD. Dissociation of spatial attention and saccade preparation. Proc Natl Acad Sci USA 2004 ; 101 : 15541–15544. [CrossRef]
  12. Sprague JM, Meikle TH. The role of the superior colliculus in visually guide behavior. Exp Neurol 1965 ; 11 : 115–146. [CrossRef] [PubMed]
  13. Sprague JM. Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 1966 ; 153 : 1544–1547. [CrossRef] [PubMed]
  14. Durmer JS, Rosenquist AC. Ibotenic acid lesions in the pedunculopontine region result in recovery of visual orienting in the hemianopic cat. Neuroscience 2001 ; 106 : 765–781. [CrossRef] [PubMed]
  15. Ignashchenkova A, Dicke PW, Haarmeier T, et al. Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat Neurosci 2003 ; 7 : 56–64. [CrossRef] [PubMed]
  16. Lovejoy LP, Krauzlis RJ. Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nat Neurosci 2010 ; 13 : 261–266. [CrossRef] [PubMed]
  17. Zénon A, Krauzlis RJ. Attention deficits without cortical neuronal deficits. Nature 2012 ; 489 : 434–437. [CrossRef] [PubMed]
  18. Reynolds JH, Chelazzi L. Attentional modulation of visual processing. Annu Rev Neurosci 2004 ; 27 : 611–647. [CrossRef] [PubMed]
  19. Krauzlis R, Lovejoy LP, Zénon A. Superior colliculus and visual spatial attention. Annu Rev Neurosci 2013 ; 36 : 165–182. [CrossRef] [PubMed]
  20. Redgrave P, Prescott TJ, Gurney K. The basal ganglia: a vertebrate solution to the selection problem?. Neuroscience 1999 ; 89 : 1009–1023. [CrossRef] [PubMed]
  21. McHaffie JG, Stanford TR, Stein BE, et al. Subcortical loops through the basal ganglia. Trends Neurosci 2005 ; 28 : 401–407. [CrossRef] [PubMed]
  22. Selemon LD, Goldman-Rakic PS. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 1988 ; 8 : 4049–4068. [PubMed]
  23. Karnath H-O. The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 2002 ; 125 : 350–360. [CrossRef] [PubMed]
  24. Miyashita N, Hikosaka O, Kato M. Visual hemineglect induced by unilateral striatal dopamine deficiency in monkeys. Neuroreport 1995 ; 6 : 1257–1260. [CrossRef] [PubMed]
  25. Ding L, Gold JI. Separate, causal roles of the Caudate in saccadic choice and execution in a perceptual decision task. Neuron 2012 ; 75 : 865–874. [CrossRef] [PubMed]
  26. Hikosaka O. Basal ganglia mechanisms of reward-oriented eye movement. Ann New York Acad Sci 2007 ; 1104 : 229–249. [CrossRef]
  27. Shires J, Joshi S, Basso MA. Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements. Curr Opin Neurobiol 2010 ; 20 : 717–725. [CrossRef] [PubMed]
  28. Hayhoe M, Ballard D. Eye movements in natural behavior. Trends Cogn Sci 2005 ; 9 : 188–194. [CrossRef] [PubMed]
  29. Chun MM. Contextual cueing of visual attention. Trends Cogn Sci 2000 ; 4 : 170–178. [CrossRef] [PubMed]
  30. Yantis S, Jonides J. Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. J Exp Psychol Hum Percept Perform 1990 ; 16 : 121–134. [CrossRef] [PubMed]
  31. Lynch JC, Tian J-R. Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res 2006 ; 151 : 461–501. [CrossRef] [PubMed]
  32. Schall JD, Morel A, King DJ, et al. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 1995 ; 15 : 4464–4487. [PubMed]
  33. Robinson DA. Eye movements evoked by collicular stimulation in the alert monkey. Vision Res 1972 ; 12 : 1795–1808. [CrossRef] [PubMed]
  34. Munoz DP, Wurtz RH. Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J Neurophysiol 1995 ; 73 : 2313–2333. [PubMed]
  35. Moschovakis AK, Scudder CA, Highstein SM. The microscopic anatomy and physiology of the mammalian saccadic system. Prog Neurobiol 1996 ; 50 : 133–254. [CrossRef] [PubMed]
  36. Olivier E, Chat M, Grantyn A. Rostrocaudal and lateromedial density distributions of superior colliculus neurons projecting in the predorsal bundle and to the spinal cord: a retrograde HRP study in the cat. Exp Brain Res 1991 ; 87 : 268–282. [CrossRef] [PubMed]
  37. Corneil BD, Olivier E, Munoz DP. Neck muscle responses to stimulation of monkey superior colliculus. I. Topography and manipulation of stimulation parameters. J Neurophysiol 2002 ; 88 : 1980–1999. [PubMed]
  38. Van Essen DC. Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LM, Werner JS, eds. Visual neurosciences. Cambridge: MIT Press, 2003 : 507–521.
  39. Mountcastle VB, Motter BC, Steinmetz MA, Sestokas AK. Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey. J Neurosci 1987 ; 7 : 2239–2257. [PubMed]
  40. Mitchell JF, Sundberg KA, Reynolds JH. Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 2007 ; 55 : 131–141. [CrossRef] [PubMed]
  41. Mitchell JF, Sundberg KA, Reynolds JH. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 2009 ; 63 : 879–888. [CrossRef] [PubMed]
  42. Bair W, Zohary E, Newsome WT. Correlated firing in macaque visual area MT: Time scales and relationship to behavior. J Neurosci 2001 ; 21 : 1676–1697. [PubMed]
  43. Treue S, Maunsell JHR. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 1996 ; 382 : 539–541. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.