Free Access
Issue
Med Sci (Paris)
Volume 30, Number 5, Mai 2014
Page(s) 519 - 525
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143005014
Published online 13 June 2014
  1. Lambeau G, Lazdunski M. Receptors for a growing family of secreted phospholipases A2. Trends Pharmacol Sci 1999 ; 20 : 162–170. [CrossRef] [PubMed] [Google Scholar]
  2. Ancian P, Lambeau G, Mattéi MG, Lazdunski M. The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. J Biol Chem 1995 ; 270 : 8963–8970. [CrossRef] [PubMed] [Google Scholar]
  3. Zvaritch E, Lambeau G, Lazdunski M. Endocytic properties of the M-type 180-kDa receptor for secretory phospholipases A2. J Biol Chem 1996 ; 271 : 250–257. [CrossRef] [PubMed] [Google Scholar]
  4. East L, Isacke CM. The mannose receptor family. Biochim Biophys Acta 2002 ; 1572 : 364–386. [CrossRef] [PubMed] [Google Scholar]
  5. Higashino K, Yokota Y, Ono T, et al. Identification of a soluble form phospholipase A2 receptor as a circulating endogenous inhibitor for secretory phospholipase A2. J Biol Chem 2002 ; 277 : 13583–13588. [CrossRef] [PubMed] [Google Scholar]
  6. Lambeau G, Schmid-Alliana A, Lazdunski M, Barhanin J. Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. J Biol Chem 1990 ; 265 : 9526–9532. [PubMed] [Google Scholar]
  7. Cupillard L, Mulherkar R, Gomez N, et al. Both group IB and group IIA secreted phospholipases A2 are natural ligands of the mouse 180-kDa M-type receptor. J Biol Chem 1999 ; 274 : 7043–7051. [CrossRef] [PubMed] [Google Scholar]
  8. Lambeau G, Gelb MH. Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 2008 ; 77 : 495–520. [CrossRef] [PubMed] [Google Scholar]
  9. Murakami M, Taketomi Y, Girard C, et al. Emerging roles of secreted phospholipase A2 enzymes: Lessons from transgenic and knockout mice. Biochimie 2010 ; 92 : 561–582. [CrossRef] [PubMed] [Google Scholar]
  10. Rouault M, Le Calvez C, Boilard E, et al. Recombinant production and properties of binding of the full set of mouse secreted phospholipases A2 to the mouse M-type receptor. Biochemistry 2007 ; 46 : 1647–1662. [CrossRef] [PubMed] [Google Scholar]
  11. Ancian P, Lambeau G, Lazdunski M. Multifunctional activity of the extracellular domain of the M-type (180 kDa) membrane receptor for secretory phospholipases A2. Biochemistry 1995 ; 34 : 13146–13151. [CrossRef] [PubMed] [Google Scholar]
  12. Nicolas J-P, Lambeau G, Lazdunski M. Identification of the binding domain for secretory phospholipases A2 on their M-type 180 kDa membrane receptor. J Biol Chem 1995 ; 270 : 28869–28873. [CrossRef] [PubMed] [Google Scholar]
  13. Hanasaki K, Arita H. Phospholipase A2 receptor: a regulator of biological functions of secretory phospholipase A2. Prostaglandins Other Lipid Mediat 2002 ; 68–69 : 71–82. [CrossRef] [PubMed] [Google Scholar]
  14. Fayard JM, Tessier C, Pageaux JF, et al. Nuclear location of PLA2-I in proliferative cells. J Cell Sci 1998 ; 111 : 985–994. [PubMed] [Google Scholar]
  15. Henderson WR, Jr, Chi EY, Bollinger JG, et al. Importance of group X-secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. J Exp Med 2007 ; 204 : 865–877. [CrossRef] [PubMed] [Google Scholar]
  16. Tamaru S, Mishina H, Watanabe Y, et al. Deficiency of phospholipase A2 receptor exacerbates ovalbumin-induced lung inflammation. J Immunol 2013 ; 191 : 1021–1028. [CrossRef] [PubMed] [Google Scholar]
  17. Hanasaki K, Yokota Y, Ishizaki J, et al. Resistance to endotoxic shock in phospholipase A2 receptor-deficient mice. J Biol Chem 1997 ; 272 : 32792–32797. [CrossRef] [PubMed] [Google Scholar]
  18. Yokota Y, Ikeda M, Higashino K, et al. Enhanced tissue expression and elevated circulating level of phospholipase A(2) receptor during murine endotoxic shock. Arch Biochem Biophys 2000 ; 379 : 7–17. [CrossRef] [PubMed] [Google Scholar]
  19. Augert A, Payré C, de Launoit Y, et al. The M-type receptor PLA2R regulates senescence through the p53 pathway. EMBO Rep 2009 ; 10 : 271–277. [CrossRef] [PubMed] [Google Scholar]
  20. Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 2010 ; 10 : 51–57. [CrossRef] [PubMed] [Google Scholar]
  21. Kim HJ, Kim KS, Kim SH, et al. Induction of cellular senescence by secretory phospholipase A2 in human dermal fibroblasts through an ROS-mediated p53 pathway. J Gerontol A Biol Sci Med Sci 2009 ; 64 : 351–362. [CrossRef] [PubMed] [Google Scholar]
  22. Vindrieux D, Augert A, Girard CA, et al. PLA2R1 mediates tumor suppression by activating JAK2. Cancer Res 2013 ; 73 : 6334–6345. [CrossRef] [PubMed] [Google Scholar]
  23. Menschikowski M, Platzbecker U, Hagelgans A, et al. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells. BMC Cancer 2012 ; 12 : 576. [CrossRef] [PubMed] [Google Scholar]
  24. Augert A, Vindrieux D, Girard CA, et al. PLA2R1 kills cancer cells by inducing mitochondrial stress. Free Radic Biol Med 2013 ; 65C : 969–977. [CrossRef] [Google Scholar]
  25. Campisi J. Aging, cellular senescence, and cancer. Ann Rev Physiol 2013 ; 75 : 685–705. [Google Scholar]
  26. Ronco P, Debiec H. Pathogenesis of membranous nephropathy: recent advances and future challenges. Nat Rev Nephrol 2012 ; 8 : 203–213. [CrossRef] [PubMed] [Google Scholar]
  27. Ponticelli C, Glassock RJ. Glomerular diseases: membranous nephropathy - A modern view. Clin J Am Soc Nephrol 2013 ; DOI : 10.2215/CJN.04160413. [Google Scholar]
  28. Heymann W, Hackel DB, Harwood S, et al. Production of nephrotic syndrome in rats by Freund’s adjuvants and rat kidney suspensions. Proc Soc Exp Biol Med 1959 ; 100 : 660–664. [CrossRef] [PubMed] [Google Scholar]
  29. Debiec H, Guigonis V, Mougenot B, et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N Engl J Med 2002 ; 346 : 2053–2060. [CrossRef] [PubMed] [Google Scholar]
  30. Beck LH, Jr., Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 2009 ; 361 : 11–21. [CrossRef] [PubMed] [Google Scholar]
  31. Debiec H, Ronco P. PLA2R autoantibodies and PLA2R glomerular deposits in membranous nephropathy. N Engl J Med 2011 ; 364 : 689–690. [CrossRef] [PubMed] [Google Scholar]
  32. Hofstra JM, Beck LH, Jr., Beck DM, et al. Anti-phospholipase A2 receptor antibodies correlate with clinical status in idiopathic membranous nephropathy. Clin J Am Soc Nephrol 2011 ; 6 : 1286–1291. [CrossRef] [PubMed] [Google Scholar]
  33. Kanigicherla D, Gummadova J, McKenzie EA, et al. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy. Kidney Int 2013 ; 83 : 940–948. [CrossRef] [PubMed] [Google Scholar]
  34. Beck LH, Jr, Fervenza FC, Beck DM, et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J Am Soc Nephrol 2011 ; 22 : 1543–1550. [CrossRef] [PubMed] [Google Scholar]
  35. Rodriguez EF, Cosio FG, Nasr SH, et al. The pathology and clinical features of early recurrent membranous glomerulonephritis. Am J Transplant 2012 ; 12 : 1029–1038. [CrossRef] [PubMed] [Google Scholar]
  36. Stahl R, Hoxha E, Fechner K. PLA2R autoantibodies and recurrent membranous nephropathy after transplantation. N Engl J Med 2010 ; 363 : 496–498. [CrossRef] [PubMed] [Google Scholar]
  37. Debiec H, Martin L, Jouanneau C, et al. Autoantibodies specific for the phospholipase A2 receptor in recurrent and de novo membranous nephropathy. Am J Transplant 2011 ; 11 : 2144–2152. [CrossRef] [PubMed] [Google Scholar]
  38. Stanescu HC, Arcos-Burgos M, Medlar A, et al. Risk HLA-DQA1 and PLA2R1 alleles in idiopathic membranous nephropathy. N Engl J Med 2011 ; 364 : 616–626. [CrossRef] [PubMed] [Google Scholar]
  39. Hofstra JM, Debiec H, Short CD, et al. Antiphospholipase A2 receptor antibody titer and subclass in idiopathic membranous nephropathy. J Am Soc Nephrol 2012 ; 23 : 1735–1743. [CrossRef] [PubMed] [Google Scholar]
  40. Dahnrich C, Komorowski L, Probst C, et al. Development of a standardized ELISA for the determination of autoantibodies against human M-type phospholipase A2 receptor in primary membranous nephropathy. Clin Chim Acta 2013 ; 421C : 213–218. [CrossRef] [PubMed] [Google Scholar]
  41. Ait-Oufella H, Mallat Z, Tedgui A. Lp-PLA2 et sPLA2 : biomarqueurs cardiovasculaires. Med Sci (Paris) 2014 ; 30 : 526–531. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Bischof O, Dejean A, Pineau P. Une re-vue de la sénescence cellulaire. Med Sci (Paris) 2009 ; 25 : 153–160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Augert A, Bernard D. Les facteurs sécrétés associés à la sénescence. Med Sci (Paris) 2009 ; 25 : 789–790. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Ronco P, Debiec H, Guigonis V. Allo-immunisation fœto-maternelle anti-CD10. Med Sci (Paris) 2009 ; 25 : 64–68. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.