Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 5, Mai 2014
Page(s) 519 - 525
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143005014
Publié en ligne 13 juin 2014
  1. Lambeau G, Lazdunski M. Receptors for a growing family of secreted phospholipases A2. Trends Pharmacol Sci 1999 ; 20 : 162–170. [CrossRef] [PubMed] [Google Scholar]
  2. Ancian P, Lambeau G, Mattéi MG, Lazdunski M. The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. J Biol Chem 1995 ; 270 : 8963–8970. [CrossRef] [PubMed] [Google Scholar]
  3. Zvaritch E, Lambeau G, Lazdunski M. Endocytic properties of the M-type 180-kDa receptor for secretory phospholipases A2. J Biol Chem 1996 ; 271 : 250–257. [CrossRef] [PubMed] [Google Scholar]
  4. East L, Isacke CM. The mannose receptor family. Biochim Biophys Acta 2002 ; 1572 : 364–386. [CrossRef] [PubMed] [Google Scholar]
  5. Higashino K, Yokota Y, Ono T, et al. Identification of a soluble form phospholipase A2 receptor as a circulating endogenous inhibitor for secretory phospholipase A2. J Biol Chem 2002 ; 277 : 13583–13588. [CrossRef] [PubMed] [Google Scholar]
  6. Lambeau G, Schmid-Alliana A, Lazdunski M, Barhanin J. Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. J Biol Chem 1990 ; 265 : 9526–9532. [PubMed] [Google Scholar]
  7. Cupillard L, Mulherkar R, Gomez N, et al. Both group IB and group IIA secreted phospholipases A2 are natural ligands of the mouse 180-kDa M-type receptor. J Biol Chem 1999 ; 274 : 7043–7051. [CrossRef] [PubMed] [Google Scholar]
  8. Lambeau G, Gelb MH. Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 2008 ; 77 : 495–520. [CrossRef] [PubMed] [Google Scholar]
  9. Murakami M, Taketomi Y, Girard C, et al. Emerging roles of secreted phospholipase A2 enzymes: Lessons from transgenic and knockout mice. Biochimie 2010 ; 92 : 561–582. [CrossRef] [PubMed] [Google Scholar]
  10. Rouault M, Le Calvez C, Boilard E, et al. Recombinant production and properties of binding of the full set of mouse secreted phospholipases A2 to the mouse M-type receptor. Biochemistry 2007 ; 46 : 1647–1662. [CrossRef] [PubMed] [Google Scholar]
  11. Ancian P, Lambeau G, Lazdunski M. Multifunctional activity of the extracellular domain of the M-type (180 kDa) membrane receptor for secretory phospholipases A2. Biochemistry 1995 ; 34 : 13146–13151. [CrossRef] [PubMed] [Google Scholar]
  12. Nicolas J-P, Lambeau G, Lazdunski M. Identification of the binding domain for secretory phospholipases A2 on their M-type 180 kDa membrane receptor. J Biol Chem 1995 ; 270 : 28869–28873. [CrossRef] [PubMed] [Google Scholar]
  13. Hanasaki K, Arita H. Phospholipase A2 receptor: a regulator of biological functions of secretory phospholipase A2. Prostaglandins Other Lipid Mediat 2002 ; 68–69 : 71–82. [CrossRef] [PubMed] [Google Scholar]
  14. Fayard JM, Tessier C, Pageaux JF, et al. Nuclear location of PLA2-I in proliferative cells. J Cell Sci 1998 ; 111 : 985–994. [PubMed] [Google Scholar]
  15. Henderson WR, Jr, Chi EY, Bollinger JG, et al. Importance of group X-secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. J Exp Med 2007 ; 204 : 865–877. [CrossRef] [PubMed] [Google Scholar]
  16. Tamaru S, Mishina H, Watanabe Y, et al. Deficiency of phospholipase A2 receptor exacerbates ovalbumin-induced lung inflammation. J Immunol 2013 ; 191 : 1021–1028. [CrossRef] [PubMed] [Google Scholar]
  17. Hanasaki K, Yokota Y, Ishizaki J, et al. Resistance to endotoxic shock in phospholipase A2 receptor-deficient mice. J Biol Chem 1997 ; 272 : 32792–32797. [CrossRef] [PubMed] [Google Scholar]
  18. Yokota Y, Ikeda M, Higashino K, et al. Enhanced tissue expression and elevated circulating level of phospholipase A(2) receptor during murine endotoxic shock. Arch Biochem Biophys 2000 ; 379 : 7–17. [CrossRef] [PubMed] [Google Scholar]
  19. Augert A, Payré C, de Launoit Y, et al. The M-type receptor PLA2R regulates senescence through the p53 pathway. EMBO Rep 2009 ; 10 : 271–277. [CrossRef] [PubMed] [Google Scholar]
  20. Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 2010 ; 10 : 51–57. [CrossRef] [PubMed] [Google Scholar]
  21. Kim HJ, Kim KS, Kim SH, et al. Induction of cellular senescence by secretory phospholipase A2 in human dermal fibroblasts through an ROS-mediated p53 pathway. J Gerontol A Biol Sci Med Sci 2009 ; 64 : 351–362. [CrossRef] [PubMed] [Google Scholar]
  22. Vindrieux D, Augert A, Girard CA, et al. PLA2R1 mediates tumor suppression by activating JAK2. Cancer Res 2013 ; 73 : 6334–6345. [CrossRef] [PubMed] [Google Scholar]
  23. Menschikowski M, Platzbecker U, Hagelgans A, et al. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells. BMC Cancer 2012 ; 12 : 576. [CrossRef] [PubMed] [Google Scholar]
  24. Augert A, Vindrieux D, Girard CA, et al. PLA2R1 kills cancer cells by inducing mitochondrial stress. Free Radic Biol Med 2013 ; 65C : 969–977. [CrossRef] [Google Scholar]
  25. Campisi J. Aging, cellular senescence, and cancer. Ann Rev Physiol 2013 ; 75 : 685–705. [CrossRef] [Google Scholar]
  26. Ronco P, Debiec H. Pathogenesis of membranous nephropathy: recent advances and future challenges. Nat Rev Nephrol 2012 ; 8 : 203–213. [CrossRef] [PubMed] [Google Scholar]
  27. Ponticelli C, Glassock RJ. Glomerular diseases: membranous nephropathy - A modern view. Clin J Am Soc Nephrol 2013 ; DOI : 10.2215/CJN.04160413. [Google Scholar]
  28. Heymann W, Hackel DB, Harwood S, et al. Production of nephrotic syndrome in rats by Freund’s adjuvants and rat kidney suspensions. Proc Soc Exp Biol Med 1959 ; 100 : 660–664. [CrossRef] [PubMed] [Google Scholar]
  29. Debiec H, Guigonis V, Mougenot B, et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N Engl J Med 2002 ; 346 : 2053–2060. [CrossRef] [PubMed] [Google Scholar]
  30. Beck LH, Jr., Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 2009 ; 361 : 11–21. [CrossRef] [PubMed] [Google Scholar]
  31. Debiec H, Ronco P. PLA2R autoantibodies and PLA2R glomerular deposits in membranous nephropathy. N Engl J Med 2011 ; 364 : 689–690. [CrossRef] [PubMed] [Google Scholar]
  32. Hofstra JM, Beck LH, Jr., Beck DM, et al. Anti-phospholipase A2 receptor antibodies correlate with clinical status in idiopathic membranous nephropathy. Clin J Am Soc Nephrol 2011 ; 6 : 1286–1291. [CrossRef] [PubMed] [Google Scholar]
  33. Kanigicherla D, Gummadova J, McKenzie EA, et al. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy. Kidney Int 2013 ; 83 : 940–948. [CrossRef] [PubMed] [Google Scholar]
  34. Beck LH, Jr, Fervenza FC, Beck DM, et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J Am Soc Nephrol 2011 ; 22 : 1543–1550. [CrossRef] [PubMed] [Google Scholar]
  35. Rodriguez EF, Cosio FG, Nasr SH, et al. The pathology and clinical features of early recurrent membranous glomerulonephritis. Am J Transplant 2012 ; 12 : 1029–1038. [CrossRef] [PubMed] [Google Scholar]
  36. Stahl R, Hoxha E, Fechner K. PLA2R autoantibodies and recurrent membranous nephropathy after transplantation. N Engl J Med 2010 ; 363 : 496–498. [CrossRef] [PubMed] [Google Scholar]
  37. Debiec H, Martin L, Jouanneau C, et al. Autoantibodies specific for the phospholipase A2 receptor in recurrent and de novo membranous nephropathy. Am J Transplant 2011 ; 11 : 2144–2152. [CrossRef] [PubMed] [Google Scholar]
  38. Stanescu HC, Arcos-Burgos M, Medlar A, et al. Risk HLA-DQA1 and PLA2R1 alleles in idiopathic membranous nephropathy. N Engl J Med 2011 ; 364 : 616–626. [CrossRef] [PubMed] [Google Scholar]
  39. Hofstra JM, Debiec H, Short CD, et al. Antiphospholipase A2 receptor antibody titer and subclass in idiopathic membranous nephropathy. J Am Soc Nephrol 2012 ; 23 : 1735–1743. [CrossRef] [PubMed] [Google Scholar]
  40. Dahnrich C, Komorowski L, Probst C, et al. Development of a standardized ELISA for the determination of autoantibodies against human M-type phospholipase A2 receptor in primary membranous nephropathy. Clin Chim Acta 2013 ; 421C : 213–218. [CrossRef] [PubMed] [Google Scholar]
  41. Ait-Oufella H, Mallat Z, Tedgui A. Lp-PLA2 et sPLA2 : biomarqueurs cardiovasculaires. Med Sci (Paris) 2014 ; 30 : 526–531. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Bischof O, Dejean A, Pineau P. Une re-vue de la sénescence cellulaire. Med Sci (Paris) 2009 ; 25 : 153–160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Augert A, Bernard D. Les facteurs sécrétés associés à la sénescence. Med Sci (Paris) 2009 ; 25 : 789–790. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Ronco P, Debiec H, Guigonis V. Allo-immunisation fœto-maternelle anti-CD10. Med Sci (Paris) 2009 ; 25 : 64–68. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.