Free Access
Issue
Med Sci (Paris)
Volume 30, Number 2, Février 2014
Page(s) 186 - 193
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143002017
Published online 24 February 2014
  1. International mouse knockout consortium, Collins FS, Rossant J, Wurst W. A mouse for all reasons. Cell 2007 ; 128 : 9–13. [CrossRef] [PubMed] [Google Scholar]
  2. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 2010 ; 79 : 181–211. [CrossRef] [PubMed] [Google Scholar]
  3. Van den Bosch M, Lohman PH, Pastink A. DNA double-strand break repair by homologous recombination. Biol Chem 2002 ; 383 : 873–892. [PubMed] [Google Scholar]
  4. Grabarz A, Barascu A, Guirouilh-Barbat J, Lopez BS. Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am J Cancer Res 2012 ; 2 : 249–268. [PubMed] [Google Scholar]
  5. Kay S, Hahn S, Marois E, et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 2007 ; 318 : 648–651. [CrossRef] [PubMed] [Google Scholar]
  6. Bogdanove AJ, Schornack S, Lahaye T. TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 2010 ; 13 : 394–401. [CrossRef] [PubMed] [Google Scholar]
  7. Mak AN, Bradley P, Cernadas RA, et al. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 2012 ; 335 : 716–719. [CrossRef] [PubMed] [Google Scholar]
  8. Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 2012 ; 335 : 720–723. [CrossRef] [PubMed] [Google Scholar]
  9. Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009 ; 326 : 1509–1512. [CrossRef] [PubMed] [Google Scholar]
  10. Moscou MJ, Bogdanove AJ, A simple cipher governs DNA recognition by TAL effectors. Science 2009 ; 326 : 1501. [CrossRef] [PubMed] [Google Scholar]
  11. Cong L, Zhou R, Kuo YC, et al. Comprehensive interrogation of natural TALE DNA-binding modules, transcriptional repressor domains. Nat Commun 2012 ; 3 : 968. [CrossRef] [PubMed] [Google Scholar]
  12. Streubel J, Blücher C, Landgraf A, Boch J. TAL effector RVD specificities and efficiencies. Nat Biotechnol 2012 ; 30 : 593–595. [CrossRef] [PubMed] [Google Scholar]
  13. Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010 ; 186 : 757–761. [CrossRef] [PubMed] [Google Scholar]
  14. Grau J, Boch J, Posch S. TALEN offer: genome-wide TALEN off-target prediction. Bioinformatics 2013 ; 29 : 2931–2932. [CrossRef] [PubMed] [Google Scholar]
  15. Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 2011 ; 29 : 731–734. [CrossRef] [PubMed] [Google Scholar]
  16. Mussolino C, Morbitzer R, Lütge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011 ; 39 : 9283–9293. [CrossRef] [PubMed] [Google Scholar]
  17. Tesson L, Usal C, Ménoret S, et al. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 2011 ; 29 : 695–696. [CrossRef] [PubMed] [Google Scholar]
  18. Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011 ; 29 : 143–148. [CrossRef] [PubMed] [Google Scholar]
  19. Cermak T, Doyle EL, Christian M, et al. Efficient design, assembly of custom TALEN, other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011 ; 39 : e82. [CrossRef] [PubMed] [Google Scholar]
  20. Li T, Huang S, Zhao X, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 2011 ; 39 : 6315–6325. [CrossRef] [PubMed] [Google Scholar]
  21. Li L, Piatek MJ, Atef A, et al. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 2012 ; 78 : 407–416. [CrossRef] [PubMed] [Google Scholar]
  22. Morbitzer R, Elsaesser J, Hausner J, Lahaye T. Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 2011 ; 39 : 5790–5799. [CrossRef] [PubMed] [Google Scholar]
  23. Huang P, Xiao A, Zhou M, et al. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 2011 ; 29 : 699–700. [CrossRef] [PubMed] [Google Scholar]
  24. Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 2011 ; 29 : 697–698. [CrossRef] [PubMed] [Google Scholar]
  25. Liu J, Li C, Yu Z, et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics 2012 ; 39 : 209–215. [CrossRef] [PubMed] [Google Scholar]
  26. Schmid-Burgk JL, Schmidt T, Kaiser V, et al. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 2013 ; 31 : 76–81. [CrossRef] [PubMed] [Google Scholar]
  27. Reyon D, Tsai SQ, Khayter C, et al. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 2012 ; 30 : 460–465. [CrossRef] [PubMed] [Google Scholar]
  28. Briggs AW, Rios X, Chari R, et al. Iterative capped assembly: rapid, scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 2012 ; 40 : e117. [CrossRef] [PubMed] [Google Scholar]
  29. Li T, Liu B, Spalding MH, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 2012 ; 30 : 390–392. [CrossRef] [PubMed] [Google Scholar]
  30. Ishibashi S, Cliffe R, Amaya E. Highly efficient bi-allelic mutation rates using TALENs in Xenopus tropicalis. Biol Open 2012 ; 1 : 1273–1276. [CrossRef] [PubMed] [Google Scholar]
  31. Lei Y, Guo X, Liu Y, et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA 2012 ; 109 : 17484–17489. [CrossRef] [Google Scholar]
  32. Huang P, Zhu Z, Lin S, Zhang B. Reverse genetic approaches in zebrafish. J Genet Genomics 2012 ; 39 : 421–433. [CrossRef] [PubMed] [Google Scholar]
  33. Bedell VM, Wang Y, Campbell JM, et al. In vivo genome editing using a high-efficiency TALEN system. Nature 2012 ; 491 : 114–118. [CrossRef] [PubMed] [Google Scholar]
  34. Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 2013 ; 10 : 329–331. [CrossRef] [PubMed] [Google Scholar]
  35. Ansai S, Sakuma T, Yamamoto T, et al. Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics 2013 ; 193 : 739–749. [CrossRef] [PubMed] [Google Scholar]
  36. Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs, TALENs. Science 2011 ; 333 : 307. [CrossRef] [PubMed] [Google Scholar]
  37. Sung YH, Baek IJ, Kim DH, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 2013 ; 31 : 23–24. [CrossRef] [PubMed] [Google Scholar]
  38. Song J, Zhong J, Guo X, et al. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res 2013 ; 23 : 1059–1062. [CrossRef] [PubMed] [Google Scholar]
  39. Carlson DF, Tan W, Lillico SG, et al. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 2012 ; 109 : 17382–17387. [CrossRef] [Google Scholar]
  40. Cade L, Reyon D, Hwang WY, et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 2012 ; 40 : 8001–8010. [CrossRef] [PubMed] [Google Scholar]
  41. Sun N, Liang J, Abil Z, Zhao H. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst 2012 ; 8 : 1255–1263. [CrossRef] [PubMed] [Google Scholar]
  42. Ma S, Zhang S, Wang F, et al. Highly efficient, specific genome editing in silkworm using custom TALENs. PLoS One 2012 ; 7 : e45035. [CrossRef] [PubMed] [Google Scholar]
  43. Piganeau M, Ghezraoui H, De Cian A, et al. Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 2013 ; 23 : 1182–1193. [CrossRef] [PubMed] [Google Scholar]
  44. Choi SM, Kim Y, Shim JS, et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 2013 ; 57 : 2458–2468. [CrossRef] [PubMed] [Google Scholar]
  45. Ding Q, Lee YK, Schaefer EA, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 2013 ; 12 : 238–251. [CrossRef] [PubMed] [Google Scholar]
  46. Arnould S, Delenda C, Grizot S, et al. The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel 2011 ; 24 : 27–31. [CrossRef] [PubMed] [Google Scholar]
  47. Urnov FD, Rebar EJ, Holmes MC, et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010 ; 11 : 636–646. [CrossRef] [PubMed] [Google Scholar]
  48. Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013 ; 31 : 227–229. [CrossRef] [PubMed] [Google Scholar]
  49. Miyanari Y, Ziegler-Birling C, Torres-Padilla ME. Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol 2013 ; 20 : 1321–1324. [CrossRef] [PubMed] [Google Scholar]
  50. Maeder ML, Angstman JF, Richardson ME, et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 2013 ; 31 : 1137–1142. [CrossRef] [PubMed] [Google Scholar]
  51. Cohen-Tannoudji M, Guénet JL. Une nouvelle ère pour la génétique du rat. Med Sci (Paris) 2011 ; 27 : 387–390. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Gatinois V, Puechberty J, Lefort G, et al. Les remaniements chromosomiques complexes : un paradigme pour l’étude de l’instabilité chromosomique. Med Sci (Paris) 2014 ; 30 : 55–63. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.