Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 2, Février 2014
Page(s) 186 - 193
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143002017
Publié en ligne 24 février 2014
  1. International mouse knockout consortium, Collins FS, Rossant J, Wurst W. A mouse for all reasons. Cell 2007 ; 128 : 9–13. [CrossRef] [PubMed]
  2. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 2010 ; 79 : 181–211. [CrossRef] [PubMed]
  3. Van den Bosch M, Lohman PH, Pastink A. DNA double-strand break repair by homologous recombination. Biol Chem 2002 ; 383 : 873–892. [PubMed]
  4. Grabarz A, Barascu A, Guirouilh-Barbat J, Lopez BS. Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am J Cancer Res 2012 ; 2 : 249–268. [PubMed]
  5. Kay S, Hahn S, Marois E, et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 2007 ; 318 : 648–651. [CrossRef] [PubMed]
  6. Bogdanove AJ, Schornack S, Lahaye T. TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 2010 ; 13 : 394–401. [CrossRef] [PubMed]
  7. Mak AN, Bradley P, Cernadas RA, et al. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 2012 ; 335 : 716–719. [CrossRef] [PubMed]
  8. Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 2012 ; 335 : 720–723. [CrossRef] [PubMed]
  9. Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009 ; 326 : 1509–1512. [CrossRef] [PubMed]
  10. Moscou MJ, Bogdanove AJ, A simple cipher governs DNA recognition by TAL effectors. Science 2009 ; 326 : 1501. [CrossRef] [PubMed]
  11. Cong L, Zhou R, Kuo YC, et al. Comprehensive interrogation of natural TALE DNA-binding modules, transcriptional repressor domains. Nat Commun 2012 ; 3 : 968. [CrossRef] [PubMed]
  12. Streubel J, Blücher C, Landgraf A, Boch J. TAL effector RVD specificities and efficiencies. Nat Biotechnol 2012 ; 30 : 593–595. [CrossRef] [PubMed]
  13. Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010 ; 186 : 757–761. [CrossRef] [PubMed]
  14. Grau J, Boch J, Posch S. TALEN offer: genome-wide TALEN off-target prediction. Bioinformatics 2013 ; 29 : 2931–2932. [CrossRef] [PubMed]
  15. Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 2011 ; 29 : 731–734. [CrossRef] [PubMed]
  16. Mussolino C, Morbitzer R, Lütge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011 ; 39 : 9283–9293. [CrossRef] [PubMed]
  17. Tesson L, Usal C, Ménoret S, et al. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 2011 ; 29 : 695–696. [CrossRef] [PubMed]
  18. Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011 ; 29 : 143–148. [CrossRef] [PubMed]
  19. Cermak T, Doyle EL, Christian M, et al. Efficient design, assembly of custom TALEN, other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011 ; 39 : e82. [CrossRef] [PubMed]
  20. Li T, Huang S, Zhao X, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 2011 ; 39 : 6315–6325. [CrossRef] [PubMed]
  21. Li L, Piatek MJ, Atef A, et al. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 2012 ; 78 : 407–416. [CrossRef] [PubMed]
  22. Morbitzer R, Elsaesser J, Hausner J, Lahaye T. Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 2011 ; 39 : 5790–5799. [CrossRef] [PubMed]
  23. Huang P, Xiao A, Zhou M, et al. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 2011 ; 29 : 699–700. [CrossRef] [PubMed]
  24. Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 2011 ; 29 : 697–698. [CrossRef] [PubMed]
  25. Liu J, Li C, Yu Z, et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics 2012 ; 39 : 209–215. [CrossRef] [PubMed]
  26. Schmid-Burgk JL, Schmidt T, Kaiser V, et al. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 2013 ; 31 : 76–81. [CrossRef] [PubMed]
  27. Reyon D, Tsai SQ, Khayter C, et al. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 2012 ; 30 : 460–465. [CrossRef] [PubMed]
  28. Briggs AW, Rios X, Chari R, et al. Iterative capped assembly: rapid, scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 2012 ; 40 : e117. [CrossRef] [PubMed]
  29. Li T, Liu B, Spalding MH, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 2012 ; 30 : 390–392. [CrossRef] [PubMed]
  30. Ishibashi S, Cliffe R, Amaya E. Highly efficient bi-allelic mutation rates using TALENs in Xenopus tropicalis. Biol Open 2012 ; 1 : 1273–1276. [CrossRef] [PubMed]
  31. Lei Y, Guo X, Liu Y, et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA 2012 ; 109 : 17484–17489. [CrossRef]
  32. Huang P, Zhu Z, Lin S, Zhang B. Reverse genetic approaches in zebrafish. J Genet Genomics 2012 ; 39 : 421–433. [CrossRef] [PubMed]
  33. Bedell VM, Wang Y, Campbell JM, et al. In vivo genome editing using a high-efficiency TALEN system. Nature 2012 ; 491 : 114–118. [CrossRef] [PubMed]
  34. Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 2013 ; 10 : 329–331. [CrossRef] [PubMed]
  35. Ansai S, Sakuma T, Yamamoto T, et al. Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics 2013 ; 193 : 739–749. [CrossRef] [PubMed]
  36. Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs, TALENs. Science 2011 ; 333 : 307. [CrossRef] [PubMed]
  37. Sung YH, Baek IJ, Kim DH, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 2013 ; 31 : 23–24. [CrossRef] [PubMed]
  38. Song J, Zhong J, Guo X, et al. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res 2013 ; 23 : 1059–1062. [CrossRef] [PubMed]
  39. Carlson DF, Tan W, Lillico SG, et al. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 2012 ; 109 : 17382–17387. [CrossRef]
  40. Cade L, Reyon D, Hwang WY, et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 2012 ; 40 : 8001–8010. [CrossRef] [PubMed]
  41. Sun N, Liang J, Abil Z, Zhao H. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst 2012 ; 8 : 1255–1263. [CrossRef] [PubMed]
  42. Ma S, Zhang S, Wang F, et al. Highly efficient, specific genome editing in silkworm using custom TALENs. PLoS One 2012 ; 7 : e45035. [CrossRef] [PubMed]
  43. Piganeau M, Ghezraoui H, De Cian A, et al. Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 2013 ; 23 : 1182–1193. [CrossRef] [PubMed]
  44. Choi SM, Kim Y, Shim JS, et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 2013 ; 57 : 2458–2468. [CrossRef] [PubMed]
  45. Ding Q, Lee YK, Schaefer EA, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 2013 ; 12 : 238–251. [CrossRef] [PubMed]
  46. Arnould S, Delenda C, Grizot S, et al. The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel 2011 ; 24 : 27–31. [CrossRef] [PubMed]
  47. Urnov FD, Rebar EJ, Holmes MC, et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010 ; 11 : 636–646. [CrossRef] [PubMed]
  48. Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013 ; 31 : 227–229. [CrossRef] [PubMed]
  49. Miyanari Y, Ziegler-Birling C, Torres-Padilla ME. Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol 2013 ; 20 : 1321–1324. [CrossRef] [PubMed]
  50. Maeder ML, Angstman JF, Richardson ME, et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 2013 ; 31 : 1137–1142. [CrossRef] [PubMed]
  51. Cohen-Tannoudji M, Guénet JL. Une nouvelle ère pour la génétique du rat. Med Sci (Paris) 2011 ; 27 : 387–390. [CrossRef] [EDP Sciences] [PubMed]
  52. Gatinois V, Puechberty J, Lefort G, et al. Les remaniements chromosomiques complexes : un paradigme pour l’étude de l’instabilité chromosomique. Med Sci (Paris) 2014 ; 30 : 55–63. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.