Free Access
Issue |
Med Sci (Paris)
Volume 30, Number 1, Janvier 2014
|
|
---|---|---|
Page(s) | 47 - 54 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20143001013 | |
Published online | 24 January 2014 |
- Winchester B. Lysosomal metabolism of glycoproteins. Glycobiology 2005 ; 15 : 1R–15R. [CrossRef] [PubMed] [Google Scholar]
- Aronson NN, Jr. Aspartylglycosaminuria: biochemistry and molecular biology. Biochim Biophys Acta 1999 ; 1455 : 139–154. [CrossRef] [PubMed] [Google Scholar]
- Need AC, Shashi V, Hitomi Y, et al. Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet 2012 ; 49 : 353–361. [CrossRef] [PubMed] [Google Scholar]
- Suzuki T, Seko A, Kitajima K, et al. Identification of peptide: N-glycanase activity in mammalian-derived cultured cells. Biochem Biophys Res Commun 1993 ; 194 : 1124–1130. [CrossRef] [PubMed] [Google Scholar]
- Suzuki T, Park H, Kitajima K, Lennarz WJ. Peptides glycosylated in the endoplasmic reticulum of yeast are subsequently deglycosylated by a soluble peptide: N-glycanase activity. J Biol Chem 1998 ; 273 : 21526–21530. [CrossRef] [PubMed] [Google Scholar]
- Suzuki T, Park H, Hollingsworth NM, et al. PNG1, a yeast gene encoding a highly conserved peptide: N-glycanase. J Cell Biol 2000 ; 149 : 1039–1052. [CrossRef] [PubMed] [Google Scholar]
- Suzuki T, Kwofie MA, Lennarz WJ. Ngly1, a mouse gene encoding a deglycosylating enzyme implicated in proteasomal degradation: expression, genomic organization, and chromosomal mapping. Biochem Biophys Res Commun 2003 ; 304 : 326–332. [CrossRef] [PubMed] [Google Scholar]
- Katiyar S, Li G, Lennarz WJ. A complex between peptide: N-glycanase and two proteasome-linked proteins suggests a mechanism for the degradation of misfolded glycoproteins. Proc Natl Acad Sci USA 2004 ; 101 : 13774–13779. [CrossRef] [Google Scholar]
- Katiyar S, Suzuki T, Balgobin BJ, Lennarz WJ. Site-directed mutagenesis study of yeast peptide: N-glycanase. Insight into the reaction mechanism of deglycosylation. J Biol Chem 2002 ; 277 : 12953–12959. [CrossRef] [PubMed] [Google Scholar]
- Lismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 2009 ; 89 : 991–1023. [CrossRef] [PubMed] [Google Scholar]
- Lee JH, Choi JM, Lee C, et al. Structure of a peptide: N-glycanase-Rad23 complex: insight into the deglycosylation for denatured glycoproteins. Proc Natl Acad Sci USA 2005 ; 102 : 9144–9149. [CrossRef] [Google Scholar]
- Zhou X, Zhao G, Truglio JJ, et al. Structural and biochemical studies of the C-terminal domain of mouse peptide-N-glycanase identify it as a mannose-binding module. Proc Natl Acad Sci USA 2006 ; 103 : 17214–17219. [CrossRef] [Google Scholar]
- Hirsch C, Misaghi S, Blom D, et al. Yeast N-glycanase distinguishes between native and non-native glycoproteins. EMBO Rep 2004 ; 5 : 201–206. [CrossRef] [PubMed] [Google Scholar]
- Wang S, Xin F, Liu X, et al. N-terminal deletion of peptide: N-glycanase results in enhanced deglycosylation activity. PLoS One 2009 ; 4 : e8335. [CrossRef] [PubMed] [Google Scholar]
- Olzmann JA, Kopito RR, Christianson JC. The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb Perspect Biol 2013. doi: 10.1101/cshperspect.a013185. [Google Scholar]
- Suzuki T, Park H, Kwofie MA, Lennarz WJ. Rad23 provides a link between the Png1 deglycosylating enzyme and the 26 S proteasome in yeast. J Biol Chem 2001 ; 276 : 21601–21607. [CrossRef] [PubMed] [Google Scholar]
- Park H, Suzuki T, Lennarz WJ. Identification of proteins that interact with mammalian peptide: N-glycanase and implicate this hydrolase in the proteasome-dependent pathway for protein degradation. Proc Natl Acad Sci USA 2001 ; 98 : 11163–11168. [CrossRef] [Google Scholar]
- Li G, Zhao G, Zhou X, et al. The AAA ATPase p97 links peptide: N-glycanase to the endoplasmic reticulum-associated E3 ligase autocrine motility factor receptor. Proc Natl Acad Sci USA 2006 ; 103 : 8348–8353. [CrossRef] [Google Scholar]
- Misaghi S, Pacold ME, Blom D, et al. Using a small molecule inhibitor of peptide: N-glycanase to probe its role in glycoprotein turnover. Chem Biol 2004 ; 11 : 1677–1687. [CrossRef] [PubMed] [Google Scholar]
- Blom D, Hirsch C, Stern P, et al. A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J 2004 ; 23 : 650–658. [CrossRef] [PubMed] [Google Scholar]
- Kario E, Tirosh B, Ploegh HL, Navon A. N-linked glycosylation does not impair proteasomal degradation but affects class I major histocompatibility complex presentation. J Biol Chem 2008 ; 283 : 244–254. [CrossRef] [PubMed] [Google Scholar]
- Andermarcher E, Bossis G, Farras R, et al. La dégradation protéasomique : de l’adressage des protéines aux nouvelles perspectives thérapeutiques. Med Sci (Paris) 2005 ; 21 : 141–149. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Chantret I, Kodali VP, Lahmouich C, et al. Endoplasmic reticulum-associated degradation (ERAD) and free oligosaccharide generation in Saccharomyces cerevisiae. J Biol Chem 2011 ; 286 : 41786–41800. [CrossRef] [PubMed] [Google Scholar]
- Davidson GS, Joe RM, Roy S, et al. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures. Mol Biol Cell 2011 ; 22 : 988–998. [CrossRef] [PubMed] [Google Scholar]
- Laporte D, Salin B, Daignan-Fornier B, Sagot I. Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol 2008 ; 181 : 737–745. [CrossRef] [PubMed] [Google Scholar]
- Kamiya Y, Satoh T, Kato K. Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta 2012 ; 1820 : 1327–1337. [CrossRef] [PubMed] [Google Scholar]
- Chantret I, Fasseu M, Zaoui K, et al. Identification of roles for peptide: N-glycanase, endo-beta-N-acetylglucosaminidase (Engase1p) during protein N-glycosylation in human HepG2 cells. PLoS One 2010 ; 5 : e11734. [CrossRef] [PubMed] [Google Scholar]
- Gosain A, Lohia R, Shrivastava A, Saran S. Identification characterization of peptide: N-glycanase from Dictyostelium discoideum. BMC Biochem 2012 ; 13 : 9. [CrossRef] [PubMed] [Google Scholar]
- Funakoshi Y, Negishi Y, Gergen JP, et al. Evidence for an essential deglycosylation-independent activity of PNGase in Drosophila melanogaster. PLoS One 2010 ; 5 : e10545. [CrossRef] [PubMed] [Google Scholar]
- Maerz S, Funakoshi Y, Negishi Y, et al. The Neurospora peptide: N-glycanase ortholog PNG1 is essential for cell polarity despite its lack of enzymatic activity. J Biol Chem 2010 ; 285 : 2326–2332. [CrossRef] [PubMed] [Google Scholar]
- Habibi-Babadi N, Su A, de Carvalho CE, Colavita A. The N-glycanase png-1 acts to limit axon branching during organ formation in Caenorhabditis elegans. J Neurosci 2010 ; 30 : 1766–1776. [CrossRef] [PubMed] [Google Scholar]
- Alonzi DS, Kukushkin NV, Allman SA, et al. Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins. Cell Mol Life Sci 2013 ; 70 : 2799–2814. [CrossRef] [PubMed] [Google Scholar]
- Chantret I, Moore SE. Free oligosaccharide regulation during mammalian protein N-glycosylation. Glycobiology 2008 ; 18 : 210–224. [CrossRef] [PubMed] [Google Scholar]
- Andermarcher E, Bossis G, Farras R, et al. La dégradation protéomique : de l’adressage des protéines aux nouvelles perspectives thérapeutiques. Med Sci (Paris) 2005 ; 21 : 141–149. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.