Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 1, Janvier 2014
Page(s) 47 - 54
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143001013
Publié en ligne 24 janvier 2014
  1. Winchester B. Lysosomal metabolism of glycoproteins. Glycobiology 2005 ; 15 : 1R–15R. [CrossRef] [PubMed] [Google Scholar]
  2. Aronson NN, Jr. Aspartylglycosaminuria: biochemistry and molecular biology. Biochim Biophys Acta 1999 ; 1455 : 139–154. [CrossRef] [PubMed] [Google Scholar]
  3. Need AC, Shashi V, Hitomi Y, et al. Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet 2012 ; 49 : 353–361. [CrossRef] [PubMed] [Google Scholar]
  4. Suzuki T, Seko A, Kitajima K, et al. Identification of peptide: N-glycanase activity in mammalian-derived cultured cells. Biochem Biophys Res Commun 1993 ; 194 : 1124–1130. [CrossRef] [PubMed] [Google Scholar]
  5. Suzuki T, Park H, Kitajima K, Lennarz WJ. Peptides glycosylated in the endoplasmic reticulum of yeast are subsequently deglycosylated by a soluble peptide: N-glycanase activity. J Biol Chem 1998 ; 273 : 21526–21530. [CrossRef] [PubMed] [Google Scholar]
  6. Suzuki T, Park H, Hollingsworth NM, et al. PNG1, a yeast gene encoding a highly conserved peptide: N-glycanase. J Cell Biol 2000 ; 149 : 1039–1052. [CrossRef] [PubMed] [Google Scholar]
  7. Suzuki T, Kwofie MA, Lennarz WJ. Ngly1, a mouse gene encoding a deglycosylating enzyme implicated in proteasomal degradation: expression, genomic organization, and chromosomal mapping. Biochem Biophys Res Commun 2003 ; 304 : 326–332. [CrossRef] [PubMed] [Google Scholar]
  8. Katiyar S, Li G, Lennarz WJ. A complex between peptide: N-glycanase and two proteasome-linked proteins suggests a mechanism for the degradation of misfolded glycoproteins. Proc Natl Acad Sci USA 2004 ; 101 : 13774–13779. [CrossRef] [Google Scholar]
  9. Katiyar S, Suzuki T, Balgobin BJ, Lennarz WJ. Site-directed mutagenesis study of yeast peptide: N-glycanase. Insight into the reaction mechanism of deglycosylation. J Biol Chem 2002 ; 277 : 12953–12959. [CrossRef] [PubMed] [Google Scholar]
  10. Lismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 2009 ; 89 : 991–1023. [CrossRef] [PubMed] [Google Scholar]
  11. Lee JH, Choi JM, Lee C, et al. Structure of a peptide: N-glycanase-Rad23 complex: insight into the deglycosylation for denatured glycoproteins. Proc Natl Acad Sci USA 2005 ; 102 : 9144–9149. [CrossRef] [Google Scholar]
  12. Zhou X, Zhao G, Truglio JJ, et al. Structural and biochemical studies of the C-terminal domain of mouse peptide-N-glycanase identify it as a mannose-binding module. Proc Natl Acad Sci USA 2006 ; 103 : 17214–17219. [CrossRef] [Google Scholar]
  13. Hirsch C, Misaghi S, Blom D, et al. Yeast N-glycanase distinguishes between native and non-native glycoproteins. EMBO Rep 2004 ; 5 : 201–206. [CrossRef] [PubMed] [Google Scholar]
  14. Wang S, Xin F, Liu X, et al. N-terminal deletion of peptide: N-glycanase results in enhanced deglycosylation activity. PLoS One 2009 ; 4 : e8335. [CrossRef] [PubMed] [Google Scholar]
  15. Olzmann JA, Kopito RR, Christianson JC. The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb Perspect Biol 2013. doi: 10.1101/cshperspect.a013185. [Google Scholar]
  16. Suzuki T, Park H, Kwofie MA, Lennarz WJ. Rad23 provides a link between the Png1 deglycosylating enzyme and the 26 S proteasome in yeast. J Biol Chem 2001 ; 276 : 21601–21607. [CrossRef] [PubMed] [Google Scholar]
  17. Park H, Suzuki T, Lennarz WJ. Identification of proteins that interact with mammalian peptide: N-glycanase and implicate this hydrolase in the proteasome-dependent pathway for protein degradation. Proc Natl Acad Sci USA 2001 ; 98 : 11163–11168. [CrossRef] [Google Scholar]
  18. Li G, Zhao G, Zhou X, et al. The AAA ATPase p97 links peptide: N-glycanase to the endoplasmic reticulum-associated E3 ligase autocrine motility factor receptor. Proc Natl Acad Sci USA 2006 ; 103 : 8348–8353. [CrossRef] [Google Scholar]
  19. Misaghi S, Pacold ME, Blom D, et al. Using a small molecule inhibitor of peptide: N-glycanase to probe its role in glycoprotein turnover. Chem Biol 2004 ; 11 : 1677–1687. [CrossRef] [PubMed] [Google Scholar]
  20. Blom D, Hirsch C, Stern P, et al. A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J 2004 ; 23 : 650–658. [CrossRef] [PubMed] [Google Scholar]
  21. Kario E, Tirosh B, Ploegh HL, Navon A. N-linked glycosylation does not impair proteasomal degradation but affects class I major histocompatibility complex presentation. J Biol Chem 2008 ; 283 : 244–254. [CrossRef] [PubMed] [Google Scholar]
  22. Andermarcher E, Bossis G, Farras R, et al. La dégradation protéasomique : de l’adressage des protéines aux nouvelles perspectives thérapeutiques. Med Sci (Paris) 2005 ; 21 : 141–149. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Chantret I, Kodali VP, Lahmouich C, et al. Endoplasmic reticulum-associated degradation (ERAD) and free oligosaccharide generation in Saccharomyces cerevisiae. J Biol Chem 2011 ; 286 : 41786–41800. [CrossRef] [PubMed] [Google Scholar]
  24. Davidson GS, Joe RM, Roy S, et al. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures. Mol Biol Cell 2011 ; 22 : 988–998. [CrossRef] [PubMed] [Google Scholar]
  25. Laporte D, Salin B, Daignan-Fornier B, Sagot I. Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol 2008 ; 181 : 737–745. [CrossRef] [PubMed] [Google Scholar]
  26. Kamiya Y, Satoh T, Kato K. Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta 2012 ; 1820 : 1327–1337. [CrossRef] [PubMed] [Google Scholar]
  27. Chantret I, Fasseu M, Zaoui K, et al. Identification of roles for peptide: N-glycanase, endo-beta-N-acetylglucosaminidase (Engase1p) during protein N-glycosylation in human HepG2 cells. PLoS One 2010 ; 5 : e11734. [CrossRef] [PubMed] [Google Scholar]
  28. Gosain A, Lohia R, Shrivastava A, Saran S. Identification characterization of peptide: N-glycanase from Dictyostelium discoideum. BMC Biochem 2012 ; 13 : 9. [CrossRef] [PubMed] [Google Scholar]
  29. Funakoshi Y, Negishi Y, Gergen JP, et al. Evidence for an essential deglycosylation-independent activity of PNGase in Drosophila melanogaster. PLoS One 2010 ; 5 : e10545. [CrossRef] [PubMed] [Google Scholar]
  30. Maerz S, Funakoshi Y, Negishi Y, et al. The Neurospora peptide: N-glycanase ortholog PNG1 is essential for cell polarity despite its lack of enzymatic activity. J Biol Chem 2010 ; 285 : 2326–2332. [CrossRef] [PubMed] [Google Scholar]
  31. Habibi-Babadi N, Su A, de Carvalho CE, Colavita A. The N-glycanase png-1 acts to limit axon branching during organ formation in Caenorhabditis elegans. J Neurosci 2010 ; 30 : 1766–1776. [CrossRef] [PubMed] [Google Scholar]
  32. Alonzi DS, Kukushkin NV, Allman SA, et al. Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins. Cell Mol Life Sci 2013 ; 70 : 2799–2814. [CrossRef] [PubMed] [Google Scholar]
  33. Chantret I, Moore SE. Free oligosaccharide regulation during mammalian protein N-glycosylation. Glycobiology 2008 ; 18 : 210–224. [CrossRef] [PubMed] [Google Scholar]
  34. Andermarcher E, Bossis G, Farras R, et al. La dégradation protéomique : de l’adressage des protéines aux nouvelles perspectives thérapeutiques. Med Sci (Paris) 2005 ; 21 : 141–149. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.