Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 1, Janvier 2014
Page(s) 55 - 63
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143001014
Publié en ligne 24 janvier 2014
  1. Pellestor F, Anahory T, Lefort G, et al. Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update 2011 ; 17 : 476–494. [CrossRef] [PubMed] [Google Scholar]
  2. Kleczkowska A, Fryns JP, Van den Berghe H. Complex chromosomal rearrangements (CCR) and their genetic consequences. J Genet Hum 1982 ; 30 : 199–214. [PubMed] [Google Scholar]
  3. Kousseff BG, Nichols P, Essig YP, et al. Complex chromosome rearrangements and congenital anomalies. Am J Med Genet 1987 ; 26 : 771–782. [CrossRef] [PubMed] [Google Scholar]
  4. Kausch K, Haaf T, Köhler J, Schmid M. Complex chromosomal rearrangement in a woman with multiple miscarriages. Am J Med Genet 1988 ; 31 : 415–420. [CrossRef] [PubMed] [Google Scholar]
  5. Houge G, Liehr T, Schoumans J, et al. Ten years follow up of a boy with a complex chromosomal rearrangement: going from a > 5 to 15-breakpoint CCR. Am J Med Genet 2003 ; 118 : 235–240. [CrossRef] [Google Scholar]
  6. Madan K, Nieuwint AWM, Van Bever Y. Recombination in a balanced complex translocation of a mother leading to a balanced reciprocal translocation in the child. Review of 60 cases of balanced complex translocations. Hum Genet 1997 ; 99 : 806–815. [CrossRef] [PubMed] [Google Scholar]
  7. Madan K. Balanced complex chromosome rearrangements: reproductive aspects. A review. Am J Med Genet 2012 ; 158 : 947–963. [CrossRef] [Google Scholar]
  8. Grasshoff U, Singer S, Liehr T, et al. A complex chromosomal rearrangement with a translocation 4;10;14 in a fertile male carrier: ascertainment through an offspring with partial trisomy 14q24–1q22 and partial monosomy 4q27–q28. Cytogenet Genome Res 2003 ; 103 : 17–23. [CrossRef] [PubMed] [Google Scholar]
  9. Karadeniz A, Mrasek K, Weise A. Further delineation of complex chromosomal rearrangements in fertile male using multicolour banding. Mol Cytogenet 2008 ; 1 : 17. [CrossRef] [PubMed] [Google Scholar]
  10. Kang SH, Shaw C, Ou Z, et al. Insertional translocation detected using FISH confirmation or array-comparative genomic hybridization (aCGH) results. Am J Med Genet 2010 ; 152 : 1111–1126. [CrossRef] [Google Scholar]
  11. Le Scouarnec S, Gribble SM. Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics. Heredity 2012 ; 108 : 75–85. [CrossRef] [PubMed] [Google Scholar]
  12. Gribble SM, Ng BL, Prigmore E, et al. Array painting: a protocol for the rapid analysis of aberrant chromosomes using DNA microarrays. Nat Protoc 2009 ; 4 : 1722–1736. [CrossRef] [PubMed] [Google Scholar]
  13. Zhang F, Dai Y, Tu Z, et al. Array-CGH detection of three cryptic submicroscopic imbalances in a complex chromosome rearrangement. J Genet 2009 ; 88 : 369–372. [CrossRef] [PubMed] [Google Scholar]
  14. Reddy KS. The conundrum of a jumping translocation (JT) in CVS from twins and review of JTs. Am J Med Genet 2010 ; 152 : 2924–2936. [CrossRef] [Google Scholar]
  15. Rosenberg C, Knijnenburg J, Chauffaille M, et al. Array CGH detection of a cryptic deletion in a complex chromosome rearrangement. Hum Genet 2005 ; 116 : 390–394. [CrossRef] [PubMed] [Google Scholar]
  16. Vanneste E, Voet T, Le Caignec C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med 2009 ; 15 : 577–583. [CrossRef] [PubMed] [Google Scholar]
  17. Steuerwald N. Meiotic spindle checkpoints for assessment of aneuploidy oocytes. Cytogenet Genome Res 2005 ; 111 : 256–259. [CrossRef] [PubMed] [Google Scholar]
  18. Tsai AG, Lieber MR., Mechanisms of chromosomal rearrangement in the human genome. BMC Genomics 2010 ; 11 : S1. [CrossRef] [Google Scholar]
  19. Lupski JR, Stankiewicz P., Genomic disorders: molecular mechanisms for rearrangements, conveyed phenotypes. PLoS Genet 2005 ; 1 : e49. [CrossRef] [PubMed] [Google Scholar]
  20. Hasting PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number. Nat Rev Genet 2009 ; 10 : 551–564. [CrossRef] [PubMed] [Google Scholar]
  21. McVey M, Lee SE. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative ending. Trends Genet 2008 ; 24 : 529–538. [CrossRef] [PubMed] [Google Scholar]
  22. George CM, Alani E. Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Critic Rev Biochem Mol Biol 2012 ; 47 : 297–313. [CrossRef] [Google Scholar]
  23. Chen JM, Cooper DN, Férec C, et al. Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol 2010 ; 20 : 222–233. [CrossRef] [PubMed] [Google Scholar]
  24. Lee JA, Carvalho CM, Lupski JR. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 2007 ; 131 : 1235–1247. [CrossRef] [PubMed] [Google Scholar]
  25. Hastings PJ, Ira G, Lupski JR. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 2009 ; 5 : e1000327. [CrossRef] [PubMed] [Google Scholar]
  26. Smith CE, Llorente B, Symington LS. Template switching during break-Induced replication. Nature 2007 ; 447 : 102–105. [CrossRef] [PubMed] [Google Scholar]
  27. Kurahashi H, Bolor H, Kato T, et al. Recent advance in our understanding of the molecular nature of chromosomal abnormalities. J Hum Genet 2009 ; 54 : 253–260. [CrossRef] [PubMed] [Google Scholar]
  28. Jaendling A, McFarlane RJ. Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore. Biochem J 2010 ; 429 : 225–234. [CrossRef] [PubMed] [Google Scholar]
  29. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001 ; 2 : 292–301. [CrossRef] [PubMed] [Google Scholar]
  30. Osborne CS, Chakalova L, Brown KE, et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 2004 ; 36 : 1065–1071. [CrossRef] [PubMed] [Google Scholar]
  31. Cohen O, Mermet MA, Demongeot J. HC Forum: a web site based on an international human cytogenetic database. Nucleic Acids Res 2001 ; 29 : 305–307. [CrossRef] [PubMed] [Google Scholar]
  32. Tihy F, Lemieux N, Lemyre E. Complex chromosome rearrangement and recombinant balanced translocation in a mother and a daughter with the same phenotypic abnormalities. Am J Med Genet 2005 ; 135 : 317–319. [CrossRef] [PubMed] [Google Scholar]
  33. Pellestor F, Imbert I, Andréo B, et al. Study of the occurrence of interchromosomal effect in spermatozoa of chromosomal rearrangement carriers by fluorescence in situ hybridization and primed in situ labeling techniques. Hum Reprod 2001 ; 16 : 1155–1164. [CrossRef] [PubMed] [Google Scholar]
  34. LeMaire-Adkins R, Radke K, Hunt PA. Lack of checkpoint control at the metaphase/anaphase transitiion: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol 1997 ; 139 : 1611–1619. [CrossRef] [PubMed] [Google Scholar]
  35. Siffroi JP, Benzacken B, Straub B, et al. Assisted reproductive technology and complex chromosomal rearrangements: the limites of ICSI. Mol Hum Reprod 1997 ; 3 : 847–851. [CrossRef] [PubMed] [Google Scholar]
  36. Lim CK, Cho JW, Kim JY, et al. A healthy live birth after successful preimplantation genetic diagnosis for carriers of complex chromosome rearrangements. Fertil Steril 2008 ; 90 : 1680–1684. [CrossRef] [PubMed] [Google Scholar]
  37. Vanneste E, Melotte C, Voet T, et al. PGD for a complex chromosomal rearrangement by array comparative genomic hybridization. Hum Reprod 2011 ; 26 : 941–949. [CrossRef] [PubMed] [Google Scholar]
  38. Reynaud C, Billaud M. La théorie de l’équilibre ponctué. Med Sci (Paris) 2011 ; 27 : 921–923. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011 ; 144 : 27–40. [CrossRef] [PubMed] [Google Scholar]
  40. Klosterman WP, Tavakoli-Yaraki M, Van Roosmalen M, et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechnisms. Cell Rep 2012 ; 1 : 648–655. [CrossRef] [PubMed] [Google Scholar]
  41. Baudat F, de Massy B. SPO11 : une activité de coupure de l’ADN indispensable à la méiose. Med Sci (Paris) 2004 ; 20 : 213–218. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Buisson R, Masson JY. Fonction des suppresseurs de tumeur PALB2 et BRCA2 dans la réparation des cassures double-brin de l’ADN. Med Sci (Paris) 2013 ; 29 : 301–307. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Coutton C, Satre V, Arnoult C, Ray P. Génétique de l’infertilité masculine : les nouveaux acteurs. Med Sci (Paris) 2012 ; 28 : 497–502. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Le Borgne M, Chartier N, Billaud M. Instabilité chromosomique et cancer, enfin des CIN révélateurs. Med Sci (Paris) 2013 ; 29 : 807–810. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.