Free Access
Issue
Med Sci (Paris)
Volume 29, Number 11, Novembre 2013
Page(s) 1055 - 1058
Section Prix Nobel 2013
DOI https://doi.org/10.1051/medsci/20112713024
Published online 20 November 2013
  1. Prigogine I.. La thermodynamique de la vie. La Recherche 2000 ; 99 : 38. [Google Scholar]
  2. Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980 ; 21 : 205–215. [CrossRef] [PubMed] [Google Scholar]
  3. Kaiser CA, Schekman R.. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 1990 ; 61 : 723–733. [CrossRef] [PubMed] [Google Scholar]
  4. Wilson DW, Wilcox CA, Flynn GC, et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 1989 ; 339 : 355–359. [CrossRef] [PubMed] [Google Scholar]
  5. Clary DO, Griff IC, Rothman JE. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 1990 ; 61 : 709–721. [CrossRef] [PubMed] [Google Scholar]
  6. Griff IC, Schekman R, Rothman JE, Kaiser CA. The yeast SEC17 gene product is functionally equivalent to mammalian α-SNAP protein. J Cell Biol 1992 ; 267 : 12106–12115. [Google Scholar]
  7. Söllner T, Whiteheart SW, Brunner M, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993 ; 362 : 318–324. [CrossRef] [PubMed] [Google Scholar]
  8. Baumert M, Maycox PR, Navone F, et al. Synaptobrevin: an integral membrane protein of 18, 000 daltons present in small synaptic vesicle of rat brain. EMBO J 1989 ; 8 : 379–384. [PubMed] [Google Scholar]
  9. Bennett MK, Calakos N, Scheller RH.. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 1992 ; 257 : 255–259. [CrossRef] [PubMed] [Google Scholar]
  10. Oyler GA, Polli JW, Higgins GA, et al. Distribution and expression of SNAP-25 immunoreactivity in rat brain, rat PC-12 cells and human SMS-KCNR neuroblastoma cells. Dev Brain Res 1992 ; 65 : 133–146. [CrossRef] [Google Scholar]
  11. Schiavo G, Benfenati F, Poulain B, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992 ; 359 : 832–835. [CrossRef] [PubMed] [Google Scholar]
  12. Blasi J, Chapman ER, Link E, et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 1993 ; 365 : 160–163. [CrossRef] [PubMed] [Google Scholar]
  13. Blasi J, Chapman ER, Yamasaki S, et al. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J 1993 ; 12 : 4821–4828. [PubMed] [Google Scholar]
  14. Galli T, Chilcote T, Mundigl O, et al. Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells. J Cell Biol 1994 ; 125 : 1015–1024. [CrossRef] [PubMed] [Google Scholar]
  15. Ferro-Novick S, Jahn R.. Vesicle fusion from yeast to man. Nature 1994 ; 370 : 191–193. [CrossRef] [PubMed] [Google Scholar]
  16. Galli T, Martinez Arca S, Paumet F.. Mécanisme de la fusion membranaire. Med Sci (Paris) 2002 ; 18 : 1113–1119. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Seagar M, Quetglas S, Iborra C, Leveque C.. Le complexe SNARE au cœur de la fusion membranaire. Med Sci (Paris) 2001 ; 17 : 669–674. [CrossRef] [Google Scholar]
  18. Weber T, Zemelman BV, McNew JA, et al. SNAREpins: minimal machinery for membrane fusion. Cell 1998 ; 92 : 759–772. [CrossRef] [PubMed] [Google Scholar]
  19. Hu C, Ahmed M, Melia TJ, et al. Fusion of cells by flipped SNAREs. Science 2003 ; 300 : 1745–1749. [CrossRef] [PubMed] [Google Scholar]
  20. Sutton RB, Fasshauer D, Reinhard J, Brunger AT.. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 1998 ; 395 : 347–353. [CrossRef] [PubMed] [Google Scholar]
  21. Li F, Pincet F, Perez E, et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 2007 ; 14 : 890–896. [CrossRef] [PubMed] [Google Scholar]
  22. Tareste D.. Énergie libérée par la machinerie de fusion SNAREpin. Med Sci (Paris) 2008 ; 24 : 142–143. [Google Scholar]
  23. Nonet ML, Saifee O, Zhao HJ, et al. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 1998 ; 18 : 70–80. [PubMed] [Google Scholar]
  24. Deitcher DL, Ueda A, Stewart BA, et al. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci 1998 ; 18 : 2028–2039. [PubMed] [Google Scholar]
  25. Schoch S, Deak F, Konigstorfer A, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 2001 ; 294 : 1117–1122. [CrossRef] [PubMed] [Google Scholar]
  26. Washbourne P, Thompson PM, Carta M, et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 2002 ; 5 : 19–26. [PubMed] [Google Scholar]
  27. FernandezChacon R, Konigstorfer A, Gerber SH, et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001 ; 410 : 41–49. [CrossRef] [PubMed] [Google Scholar]
  28. McMahon HT, Missler M, Li C, Südhof TC.. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 1995 ; 83 : 111–119. [CrossRef] [PubMed] [Google Scholar]
  29. Tang J, Maximov A, Shin OH, et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 2006 ; 126 : 1175–1187. [CrossRef] [PubMed] [Google Scholar]
  30. Giraudo CG, Eng WS, Melia TJ, Rothman JE.. A clamping mechanism involved in SNARE-dependent exocytosis. Science 2006 ; 313 : 676–680. [CrossRef] [PubMed] [Google Scholar]
  31. Verhage M, Maia AS, Plomp JJ, et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 2000 ; 287 : 864–869. [CrossRef] [PubMed] [Google Scholar]
  32. Hata Y, Slaughter CA, Sudhof TC. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 1993 ; 366 : 347–351. [CrossRef] [PubMed] [Google Scholar]
  33. Shen J, Tareste D, Paumet F, et al. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 2007 ; 128 : 183–195. [CrossRef] [PubMed] [Google Scholar]
  34. Sudhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science 2009 ; 323 : 474–477. [CrossRef] [PubMed] [Google Scholar]
  35. Nicol X, Voyatzis S, Muzerelle A, et al. cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nat Neurosci 2007 ; 10 : 340–347. [CrossRef] [PubMed] [Google Scholar]
  36. Zylbersztejn K, Petkovic M, Burgo A, et al. The vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion. J Cell Biol 2012 ; 196 : 37–46. [CrossRef] [PubMed] [Google Scholar]
  37. Zylbersztejn K, Galli T.. Le trafic membranaire, un nouvel acteur du guidage axonal. Med Sci (Paris) 2012 ; 28 : 267–269. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Danielian S, Basile N, Rocco C, et al. Novel syntaxin 11 gene (STX11) mutation in three Argentinean patients with hemophagocytic lymphohistiocytosis. J Clin Immunol 2010 ; 30 : 330–337. [CrossRef] [PubMed] [Google Scholar]
  39. Cote M, Menager MM, Burgess A, et al. Munc18–2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest 2009 ; 119 : 3765–3773. [CrossRef] [PubMed] [Google Scholar]
  40. Menager MM, Menasche G, Romao M, et al. Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13–4. Nat Immunol 2007 ; 8 : 257–267. [CrossRef] [PubMed] [Google Scholar]
  41. Feldmann J, Callebaut I, Raposo G, et al. Munc13–4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 2003 ; 115 : 461–473. [CrossRef] [PubMed] [Google Scholar]
  42. Larghi P, Williamson DJ, Carpier JM, et al. VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nat Immunol 2013 ; 14 : 723–731. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.