Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 11, Novembre 2013
Page(s) 1055 - 1058
Section Prix Nobel 2013
DOI https://doi.org/10.1051/medsci/20112713024
Publié en ligne 20 novembre 2013
  1. Prigogine I.. La thermodynamique de la vie. La Recherche 2000 ; 99 : 38. [Google Scholar]
  2. Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980 ; 21 : 205–215. [CrossRef] [PubMed] [Google Scholar]
  3. Kaiser CA, Schekman R.. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 1990 ; 61 : 723–733. [CrossRef] [PubMed] [Google Scholar]
  4. Wilson DW, Wilcox CA, Flynn GC, et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 1989 ; 339 : 355–359. [CrossRef] [PubMed] [Google Scholar]
  5. Clary DO, Griff IC, Rothman JE. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 1990 ; 61 : 709–721. [CrossRef] [PubMed] [Google Scholar]
  6. Griff IC, Schekman R, Rothman JE, Kaiser CA. The yeast SEC17 gene product is functionally equivalent to mammalian α-SNAP protein. J Cell Biol 1992 ; 267 : 12106–12115. [Google Scholar]
  7. Söllner T, Whiteheart SW, Brunner M, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993 ; 362 : 318–324. [CrossRef] [PubMed] [Google Scholar]
  8. Baumert M, Maycox PR, Navone F, et al. Synaptobrevin: an integral membrane protein of 18, 000 daltons present in small synaptic vesicle of rat brain. EMBO J 1989 ; 8 : 379–384. [PubMed] [Google Scholar]
  9. Bennett MK, Calakos N, Scheller RH.. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 1992 ; 257 : 255–259. [CrossRef] [PubMed] [Google Scholar]
  10. Oyler GA, Polli JW, Higgins GA, et al. Distribution and expression of SNAP-25 immunoreactivity in rat brain, rat PC-12 cells and human SMS-KCNR neuroblastoma cells. Dev Brain Res 1992 ; 65 : 133–146. [CrossRef] [Google Scholar]
  11. Schiavo G, Benfenati F, Poulain B, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992 ; 359 : 832–835. [CrossRef] [PubMed] [Google Scholar]
  12. Blasi J, Chapman ER, Link E, et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 1993 ; 365 : 160–163. [CrossRef] [PubMed] [Google Scholar]
  13. Blasi J, Chapman ER, Yamasaki S, et al. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J 1993 ; 12 : 4821–4828. [PubMed] [Google Scholar]
  14. Galli T, Chilcote T, Mundigl O, et al. Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells. J Cell Biol 1994 ; 125 : 1015–1024. [CrossRef] [PubMed] [Google Scholar]
  15. Ferro-Novick S, Jahn R.. Vesicle fusion from yeast to man. Nature 1994 ; 370 : 191–193. [CrossRef] [PubMed] [Google Scholar]
  16. Galli T, Martinez Arca S, Paumet F.. Mécanisme de la fusion membranaire. Med Sci (Paris) 2002 ; 18 : 1113–1119. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Seagar M, Quetglas S, Iborra C, Leveque C.. Le complexe SNARE au cœur de la fusion membranaire. Med Sci (Paris) 2001 ; 17 : 669–674. [CrossRef] [Google Scholar]
  18. Weber T, Zemelman BV, McNew JA, et al. SNAREpins: minimal machinery for membrane fusion. Cell 1998 ; 92 : 759–772. [CrossRef] [PubMed] [Google Scholar]
  19. Hu C, Ahmed M, Melia TJ, et al. Fusion of cells by flipped SNAREs. Science 2003 ; 300 : 1745–1749. [CrossRef] [PubMed] [Google Scholar]
  20. Sutton RB, Fasshauer D, Reinhard J, Brunger AT.. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 1998 ; 395 : 347–353. [CrossRef] [PubMed] [Google Scholar]
  21. Li F, Pincet F, Perez E, et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 2007 ; 14 : 890–896. [CrossRef] [PubMed] [Google Scholar]
  22. Tareste D.. Énergie libérée par la machinerie de fusion SNAREpin. Med Sci (Paris) 2008 ; 24 : 142–143. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Nonet ML, Saifee O, Zhao HJ, et al. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 1998 ; 18 : 70–80. [PubMed] [Google Scholar]
  24. Deitcher DL, Ueda A, Stewart BA, et al. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci 1998 ; 18 : 2028–2039. [PubMed] [Google Scholar]
  25. Schoch S, Deak F, Konigstorfer A, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 2001 ; 294 : 1117–1122. [CrossRef] [PubMed] [Google Scholar]
  26. Washbourne P, Thompson PM, Carta M, et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 2002 ; 5 : 19–26. [PubMed] [Google Scholar]
  27. FernandezChacon R, Konigstorfer A, Gerber SH, et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001 ; 410 : 41–49. [CrossRef] [PubMed] [Google Scholar]
  28. McMahon HT, Missler M, Li C, Südhof TC.. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 1995 ; 83 : 111–119. [CrossRef] [PubMed] [Google Scholar]
  29. Tang J, Maximov A, Shin OH, et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 2006 ; 126 : 1175–1187. [CrossRef] [PubMed] [Google Scholar]
  30. Giraudo CG, Eng WS, Melia TJ, Rothman JE.. A clamping mechanism involved in SNARE-dependent exocytosis. Science 2006 ; 313 : 676–680. [CrossRef] [PubMed] [Google Scholar]
  31. Verhage M, Maia AS, Plomp JJ, et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 2000 ; 287 : 864–869. [CrossRef] [PubMed] [Google Scholar]
  32. Hata Y, Slaughter CA, Sudhof TC. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 1993 ; 366 : 347–351. [CrossRef] [PubMed] [Google Scholar]
  33. Shen J, Tareste D, Paumet F, et al. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 2007 ; 128 : 183–195. [CrossRef] [PubMed] [Google Scholar]
  34. Sudhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science 2009 ; 323 : 474–477. [CrossRef] [PubMed] [Google Scholar]
  35. Nicol X, Voyatzis S, Muzerelle A, et al. cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nat Neurosci 2007 ; 10 : 340–347. [CrossRef] [PubMed] [Google Scholar]
  36. Zylbersztejn K, Petkovic M, Burgo A, et al. The vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion. J Cell Biol 2012 ; 196 : 37–46. [CrossRef] [PubMed] [Google Scholar]
  37. Zylbersztejn K, Galli T.. Le trafic membranaire, un nouvel acteur du guidage axonal. Med Sci (Paris) 2012 ; 28 : 267–269. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Danielian S, Basile N, Rocco C, et al. Novel syntaxin 11 gene (STX11) mutation in three Argentinean patients with hemophagocytic lymphohistiocytosis. J Clin Immunol 2010 ; 30 : 330–337. [CrossRef] [PubMed] [Google Scholar]
  39. Cote M, Menager MM, Burgess A, et al. Munc18–2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest 2009 ; 119 : 3765–3773. [CrossRef] [PubMed] [Google Scholar]
  40. Menager MM, Menasche G, Romao M, et al. Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13–4. Nat Immunol 2007 ; 8 : 257–267. [CrossRef] [PubMed] [Google Scholar]
  41. Feldmann J, Callebaut I, Raposo G, et al. Munc13–4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 2003 ; 115 : 461–473. [CrossRef] [PubMed] [Google Scholar]
  42. Larghi P, Williamson DJ, Carpier JM, et al. VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nat Immunol 2013 ; 14 : 723–731. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.