Free Access
Issue
Med Sci (Paris)
Volume 29, Number 11, Novembre 2013
Page(s) 1026 - 1033
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20132911020
Published online 20 November 2013
  1. Warburg O. On the origin of cancer cells. Science 1956 ; 123 : 309–314. [CrossRef] [PubMed] [Google Scholar]
  2. Ward PS, Thompson CB. Metabolic reprogramming : a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012 ; 21 : 297–308. [CrossRef] [PubMed] [Google Scholar]
  3. Dang CV. Links between metabolism and cancer. Genes Dev 2012 ; 26 : 877–890. [CrossRef] [PubMed] [Google Scholar]
  4. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect : the metabolic requirements of cell proliferation. Science 2009 ; 324 : 1029–1033. [CrossRef] [PubMed] [Google Scholar]
  5. Wolf A, Agnihotri S, Micallef J, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiform. J Exp Med 2011 ; 208 : 313–326. [CrossRef] [PubMed] [Google Scholar]
  6. Gottlob K, Majewski N, Kennedy S, et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001 ; 15 : 1406–1418. [CrossRef] [PubMed] [Google Scholar]
  7. Chesney J, Mitchell R, Benigni F, et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element : role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci USA 1999 ; 96 : 3047–3052. [CrossRef] [Google Scholar]
  8. Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008 ; 452 : 230–233. [CrossRef] [PubMed] [Google Scholar]
  9. David CJ, Chen M, Assanah M, et al. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2010 ; 463 : 364–368. [CrossRef] [PubMed] [Google Scholar]
  10. Wang Z, Jeon HY, Rigo F, et al. Manipulation of PK-M mutually exclusive alternative splicing by antisense oligonucleotides. Open Biol 2012 ; 2 : 120133. [CrossRef] [PubMed] [Google Scholar]
  11. Elstrom RL, Bauer DE, Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 2004 ; 64 : 3892–3899. [CrossRef] [PubMed] [Google Scholar]
  12. Robey RB, Hay N. Is Akt the Warburg kinase? Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 2009 ; 19 : 25–31. [CrossRef] [PubMed] [Google Scholar]
  13. Wofford JA, Wieman HL, Jacobs SR, et al. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 2008 ; 111 : 2101–2111. [CrossRef] [PubMed] [Google Scholar]
  14. Chiaradonna F, Sacco E, Manzoni R, et al. Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 2006 ; 25 : 5391–404. [CrossRef] [PubMed] [Google Scholar]
  15. Yun J, Rago C, Cheong I, et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 2009 ; 325 : 1555–1559. [CrossRef] [PubMed] [Google Scholar]
  16. Faubert B, Boily G, Izreig S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 2013 ; 17 : 113–124. [CrossRef] [PubMed] [Google Scholar]
  17. Brahimi-Horn C, Pouyssegur J. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer 2006 ; 93 : E73–E80. [PubMed] [Google Scholar]
  18. Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 2002 ; 277 : 23111–23115. [CrossRef] [PubMed] [Google Scholar]
  19. Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009 ; 15 : 6479–6483. [CrossRef] [PubMed] [Google Scholar]
  20. Yuneva M, Zamboni N, Oefner P, et al. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 2007 ; 178 : 93–105. [CrossRef] [PubMed] [Google Scholar]
  21. Shen L, Sun X, Fu Z, et al. The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin Cancer Res 2012 ; 18 : 1561–1567. [CrossRef] [PubMed] [Google Scholar]
  22. Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006 ; 126 : 107–120. [CrossRef] [PubMed] [Google Scholar]
  23. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 2004 ; 64 : 2627–2633. [CrossRef] [PubMed] [Google Scholar]
  24. Kawauchi K, Araki K, Tobiume K, et al. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 2008 ; 10 : 611–618. [CrossRef] [PubMed] [Google Scholar]
  25. Matoba S, Kang JG, Patino WD, et al. p53 regulates mitochondrial respiration. Science 2006 ; 312 : 1650–1653. [CrossRef] [PubMed] [Google Scholar]
  26. Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 2012 ; 72 : 560–567. [CrossRef] [PubMed] [Google Scholar]
  27. Lagarrigue S, Blanchet E, Annicotte JS, et al. Le double jeu des régulateurs du cycle cellulaire. Med Sci (Paris) 2011 ; 27 : 508–513. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Chen HZ, Tsai SY. Leone G Emerging roles of E2Fs in cancer : an exit from cell cycle control. Nat Rev Cancer 2009 ; 9 : 785–797. [CrossRef] [PubMed] [Google Scholar]
  29. Hsieh MC, Das D, Sambandam N, et al. Regulation of the PDK4 isozyme by the Rb-E2F1 complex. J Biol Chem 2008 ; 283 : 27410–27417. [CrossRef] [PubMed] [Google Scholar]
  30. Cai Q, Lin T, Kamarajugadda S, et al. Regulation of glycolysis and the Warburg effect by estrogen-related receptors. Oncogene 2013 ; 32 : 2079–2086. [CrossRef] [PubMed] [Google Scholar]
  31. Gao P, Sun L, He X, et al. MicroRNAs and the Warburg effect : new players in an old arena. Curr Gene Ther 2012 ; 12 : 285–291. [CrossRef] [PubMed] [Google Scholar]
  32. Eichner LJ, Perry MC, Dufour CR, et al. miR-378* mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway. Cell Metab 2010 ; 12 : 352–361. [CrossRef] [PubMed] [Google Scholar]
  33. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004 ; 4 : 891–899. [Google Scholar]
  34. Terret C, Solari F. L’homéostasie métabolique au cœur du vieillissement. Med Sci (Paris) 2012 ; 28 : 311–315. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Vander Heiden MG Targeting cancer metabolism : a therapeutic window opens. Nat Rev Drug Discov 2011 ; 10 : 671–684. [CrossRef] [PubMed] [Google Scholar]
  36. Foretz M, Viollet B. Mécanisme d’inhibition de la production hépatique de glucose par la metformine. Med Sci (Paris) 2010 ; 26 : 663–666. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Tong X, Zhao F, Thompson CB. The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev 2009 ; 19 : 32–37. [CrossRef] [PubMed] [Google Scholar]
  38. Kuhajda FP. Fatty-acid synthase and human cancer : new perspectives on its role in tumor biology. Nutrition 2000 ; 16 : 202–208. [CrossRef] [PubMed] [Google Scholar]
  39. Yang W, Xia Y, Ji H, et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 2011 ; 480 : 118–122. [CrossRef] [PubMed] [Google Scholar]
  40. Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab 2012 ; 16 : 9–17. [CrossRef] [PubMed] [Google Scholar]
  41. Sebastian C, Zwaans BM, Silberman DM, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012 ; 151 : 1185–1199. [CrossRef] [PubMed] [Google Scholar]
  42. Foretz M, Taleux N, Guigas B, et al. Régulation du métabolisme par l’AMPK : une nouvelle voie thérapeutique pour le traitement des maladies métaboliques et cardiaques. Med Sci (Paris) 2006 ; 22 : 381–388. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Foretz M, Viollet B. Les nouvelles promesses de la metformine : vers une meilleure compréhension de ses mécanismes d’action. Med Sci (Paris) 2013 ; 29 (sous presse). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.