Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 11, Novembre 2013
Page(s) 1026 - 1033
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20132911020
Publié en ligne 20 novembre 2013
  1. Warburg O. On the origin of cancer cells. Science 1956 ; 123 : 309–314. [CrossRef] [PubMed]
  2. Ward PS, Thompson CB. Metabolic reprogramming : a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012 ; 21 : 297–308. [CrossRef] [PubMed]
  3. Dang CV. Links between metabolism and cancer. Genes Dev 2012 ; 26 : 877–890. [CrossRef] [PubMed]
  4. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect : the metabolic requirements of cell proliferation. Science 2009 ; 324 : 1029–1033. [CrossRef] [PubMed]
  5. Wolf A, Agnihotri S, Micallef J, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiform. J Exp Med 2011 ; 208 : 313–326. [CrossRef] [PubMed]
  6. Gottlob K, Majewski N, Kennedy S, et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001 ; 15 : 1406–1418. [CrossRef] [PubMed]
  7. Chesney J, Mitchell R, Benigni F, et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element : role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci USA 1999 ; 96 : 3047–3052. [CrossRef]
  8. Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008 ; 452 : 230–233. [CrossRef] [PubMed]
  9. David CJ, Chen M, Assanah M, et al. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2010 ; 463 : 364–368. [CrossRef] [PubMed]
  10. Wang Z, Jeon HY, Rigo F, et al. Manipulation of PK-M mutually exclusive alternative splicing by antisense oligonucleotides. Open Biol 2012 ; 2 : 120133. [CrossRef] [PubMed]
  11. Elstrom RL, Bauer DE, Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 2004 ; 64 : 3892–3899. [CrossRef] [PubMed]
  12. Robey RB, Hay N. Is Akt the Warburg kinase? Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 2009 ; 19 : 25–31. [CrossRef] [PubMed]
  13. Wofford JA, Wieman HL, Jacobs SR, et al. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 2008 ; 111 : 2101–2111. [CrossRef] [PubMed]
  14. Chiaradonna F, Sacco E, Manzoni R, et al. Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 2006 ; 25 : 5391–404. [CrossRef] [PubMed]
  15. Yun J, Rago C, Cheong I, et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 2009 ; 325 : 1555–1559. [CrossRef] [PubMed]
  16. Faubert B, Boily G, Izreig S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 2013 ; 17 : 113–124. [CrossRef] [PubMed]
  17. Brahimi-Horn C, Pouyssegur J. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer 2006 ; 93 : E73–E80. [PubMed]
  18. Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 2002 ; 277 : 23111–23115. [CrossRef] [PubMed]
  19. Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009 ; 15 : 6479–6483. [CrossRef] [PubMed]
  20. Yuneva M, Zamboni N, Oefner P, et al. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 2007 ; 178 : 93–105. [CrossRef] [PubMed]
  21. Shen L, Sun X, Fu Z, et al. The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin Cancer Res 2012 ; 18 : 1561–1567. [CrossRef] [PubMed]
  22. Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006 ; 126 : 107–120. [CrossRef] [PubMed]
  23. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 2004 ; 64 : 2627–2633. [CrossRef] [PubMed]
  24. Kawauchi K, Araki K, Tobiume K, et al. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 2008 ; 10 : 611–618. [CrossRef] [PubMed]
  25. Matoba S, Kang JG, Patino WD, et al. p53 regulates mitochondrial respiration. Science 2006 ; 312 : 1650–1653. [CrossRef] [PubMed]
  26. Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 2012 ; 72 : 560–567. [CrossRef] [PubMed]
  27. Lagarrigue S, Blanchet E, Annicotte JS, et al. Le double jeu des régulateurs du cycle cellulaire. Med Sci (Paris) 2011 ; 27 : 508–513. [CrossRef] [EDP Sciences] [PubMed]
  28. Chen HZ, Tsai SY. Leone G Emerging roles of E2Fs in cancer : an exit from cell cycle control. Nat Rev Cancer 2009 ; 9 : 785–797. [CrossRef] [PubMed]
  29. Hsieh MC, Das D, Sambandam N, et al. Regulation of the PDK4 isozyme by the Rb-E2F1 complex. J Biol Chem 2008 ; 283 : 27410–27417. [CrossRef] [PubMed]
  30. Cai Q, Lin T, Kamarajugadda S, et al. Regulation of glycolysis and the Warburg effect by estrogen-related receptors. Oncogene 2013 ; 32 : 2079–2086. [CrossRef] [PubMed]
  31. Gao P, Sun L, He X, et al. MicroRNAs and the Warburg effect : new players in an old arena. Curr Gene Ther 2012 ; 12 : 285–291. [CrossRef] [PubMed]
  32. Eichner LJ, Perry MC, Dufour CR, et al. miR-378* mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway. Cell Metab 2010 ; 12 : 352–361. [CrossRef] [PubMed]
  33. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004 ; 4 : 891–899. [CrossRef] [PubMed]
  34. Terret C, Solari F. L’homéostasie métabolique au cœur du vieillissement. Med Sci (Paris) 2012 ; 28 : 311–315. [CrossRef] [EDP Sciences] [PubMed]
  35. Vander Heiden MG Targeting cancer metabolism : a therapeutic window opens. Nat Rev Drug Discov 2011 ; 10 : 671–684. [CrossRef] [PubMed]
  36. Foretz M, Viollet B. Mécanisme d’inhibition de la production hépatique de glucose par la metformine. Med Sci (Paris) 2010 ; 26 : 663–666. [CrossRef] [EDP Sciences] [PubMed]
  37. Tong X, Zhao F, Thompson CB. The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev 2009 ; 19 : 32–37. [CrossRef] [PubMed]
  38. Kuhajda FP. Fatty-acid synthase and human cancer : new perspectives on its role in tumor biology. Nutrition 2000 ; 16 : 202–208. [CrossRef] [PubMed]
  39. Yang W, Xia Y, Ji H, et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 2011 ; 480 : 118–122. [CrossRef] [PubMed]
  40. Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab 2012 ; 16 : 9–17. [CrossRef] [PubMed]
  41. Sebastian C, Zwaans BM, Silberman DM, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012 ; 151 : 1185–1199. [CrossRef] [PubMed]
  42. Foretz M, Taleux N, Guigas B, et al. Régulation du métabolisme par l’AMPK : une nouvelle voie thérapeutique pour le traitement des maladies métaboliques et cardiaques. Med Sci (Paris) 2006 ; 22 : 381–388. [CrossRef] [EDP Sciences] [PubMed]
  43. Foretz M, Viollet B. Les nouvelles promesses de la metformine : vers une meilleure compréhension de ses mécanismes d’action. Med Sci (Paris) 2013 ; 29 (sous presse).

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.