Free Access
Issue
Med Sci (Paris)
Volume 29, Number 10, Octobre 2013
Page(s) 875 - 882
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20132910015
Published online 18 October 2013
  1. Smith JC, Ellenberger HH, Ballanyi K, et al. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 1991 ; 254 : 726–729. [CrossRef] [PubMed] [Google Scholar]
  2. Blanchi B, Kelly LM, Viemari JC, et al. MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nat Neurosci 2003 ; 6 : 1091–1100. [CrossRef] [PubMed] [Google Scholar]
  3. Bouvier J, Thoby-Brisson M, Renier N, et al. Hindbrain interneurons and axon guidance signaling critical for breathing. Nat Neurosci 2010 ; 13 : 1066–1074. [CrossRef] [PubMed] [Google Scholar]
  4. Burgold T, Voituron N, Caganova M, et al. The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep 2012 ; 2 : 1244–1258. [CrossRef] [PubMed] [Google Scholar]
  5. Suzue T. Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat. J Physiol 1984 ; 354 : 173–183. [PubMed] [Google Scholar]
  6. Onimaru H, Homma I. Respiratory rhythm generator neurons in medulla of brainstem-spinal cord preparation from newborn rat. Brain Res 1987 ; 403 : 380–384. [CrossRef] [PubMed] [Google Scholar]
  7. Onimaru H, Arata A, Homma I. Primary respiratory rhythm generator in the medulla of brainstem-spinal cord preparation from newborn rat. Brain Res 1988 ; 445 : 314–324. [CrossRef] [PubMed] [Google Scholar]
  8. Onimaru H, Arata A, Homma I. Firing properties of respiratory rhythm generating neurons in the absence of synaptic transmission in rat medulla in vitro. Exp Brain Res 1989 ; 76 : 530–536. [CrossRef] [PubMed] [Google Scholar]
  9. Del Negro CA, Morgado-Valle C, Feldman JL. Respiratory rhythm: an emergent network property? Neuron 2002 ; 34 : 821–830. [CrossRef] [PubMed] [Google Scholar]
  10. Pena F, Parkis MA, Tryba AK, Ramirez JM. Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 2004 ; 43 : 105–117. [CrossRef] [PubMed] [Google Scholar]
  11. Del Negro CA, Morgado-Valle C, Hayes JA, et al. Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J Neurosci 2005 ; 25 : 446–453. [CrossRef] [PubMed] [Google Scholar]
  12. Viemari JC, Tryba AK. Bioaminergic neuromodulation of respiratory rhythm in vitro. Respir Physiol Neurobiol 2009 ; 168 : 69–75. [CrossRef] [PubMed] [Google Scholar]
  13. Viemari JC, Ramirez JM. Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. J Neurophysiol 2006 ; 95 : 2070–2082. [CrossRef] [PubMed] [Google Scholar]
  14. Di Pasquale E, Monteau R, Hilaire G. Involvement of the rostral ventro-lateral medulla in respiratory rhythm genesis during the peri-natal period: an in vitro study in newborn and fetal rats. Brain Res Dev Brain Res 1994 ; 78 : 243–252. [CrossRef] [PubMed] [Google Scholar]
  15. Bou-Flores C, Lajard AM, Monteau R, et al. Abnormal phrenic motoneuron activity and morphology in neonatal monoamine oxidase A-deficient transgenic mice: possible role of a serotonin excess. J Neurosci 2000 ; 20 : 4646–4656. [PubMed] [Google Scholar]
  16. Zanella S, Watrin F, Mebarek S, et al. Necdin plays a role in the serotonergic modulation of the mouse respiratory network: implication for Prader-Willi syndrome. J Neurosci 2008 ; 28 : 1745–1755. [CrossRef] [PubMed] [Google Scholar]
  17. Viemari JC, Bévengut M, Burnet H, et al. Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice. J Neurosci 2004 ; 24 : 928–937. [CrossRef] [PubMed] [Google Scholar]
  18. Viemari JC, Maussion G, Bévengut M, et al. Ret deficiency in mice impairs the development of A5 and A6 neurons and the functional maturation of the respiratory rhythm. Eur J Neurosci 2005 ; 22 : 2403–2412. [CrossRef] [PubMed] [Google Scholar]
  19. Hilaire G. Endogenous noradrenaline affects the maturation and function of the respiratory network: possible implication for SIDS. Auton Neurosci 2006 ; 126–127 : 320–31. [Google Scholar]
  20. Hilaire G, Voituron N, Menuet C, et al. The role of serotonin in respiratory function and dysfunction. Respir Physiol Neurobiol 2010 ; 174 : 76–88. [CrossRef] [PubMed] [Google Scholar]
  21. Paterson DS, Hilaire G, Weese-Mayer DE. Medullary serotonin defects and respiratory dysfunction in sudden infant death syndrome. Respir Physiol Neurobiol 2009 ; 168 : 133–143. [CrossRef] [PubMed] [Google Scholar]
  22. Thoby-Brisson M, Trinh J-B, Champagnat J, Fortin G. Emergence of the pre-Bötzinger respiratory rhythm generator in the mouse embryo. J Neurosci 2005 ; 25 : 4307–4318. [CrossRef] [PubMed] [Google Scholar]
  23. Champagnat J, Morin-Surun MP, Bouvier J, et al. Prenatal development of central rhythm generation. Respir Physiol Neurobiol 2011 ; 178 : 146–155. [CrossRef] [PubMed] [Google Scholar]
  24. Tan W, Janczewski WA, Yang P, et al. Silencing preBötzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nat Neurosci 2008 ; 11 : 538–540. [CrossRef] [PubMed] [Google Scholar]
  25. Tan W, Sherman D, Turesson J, et al. Reelin demarcates a subset of pre-Bötzinger complex neurons in adult rat. J Comp Neurol 2012 ; 520 : 606–619. [CrossRef] [PubMed] [Google Scholar]
  26. Schwarzacher SW, Rüb U, Deller T. Neuroanatomical characteristics of the human pre-Bötzinger complex and its involvement in neurodegenerative brainstem diseases. Brain 2011 ; 134 : 24–35. [CrossRef] [PubMed] [Google Scholar]
  27. Dubreuil V, Thoby-Brisson M, Rallu M, et al. Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci 2009 ; 29 : 14836–14846. [CrossRef] [PubMed] [Google Scholar]
  28. Caubit X, Thoby-Brisson M, Voituron N, et al. Teashirt 3 regulates development of neurons involved in both respiratory rhythm and airflow control. J Neurosci 2010 ; 30 : 9465–9476. [CrossRef] [PubMed] [Google Scholar]
  29. Dutschmann M, Menuet C, Stettner GM, et al. Upper airway dysfunction of Tau-P301L mice correlates with tauopathy in midbrain and ponto-medullary brainstem nuclei. J Neurosci 2010 ; 30 : 1810–1821. [CrossRef] [PubMed] [Google Scholar]
  30. Menuet C, Borghgraef P, Matarazzo V, et al. Raphé tauopathy alters serotonin metabolism and breathing activity in terminal Tau.P301L mice: possible implications for tauopathies and Alzheimer’s disease. Respir Physiol Neurobiol 2011 ; 178 : 290–303. [CrossRef] [PubMed] [Google Scholar]
  31. Gray PA, Rekling JC, Bocchiaro CM, Feldman JL. Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBötzinger complex. Science 1999 ; 286 : 1566–1568. [CrossRef] [PubMed] [Google Scholar]
  32. Ptak K, Burnet H, Blanchi B, et al. The murine neurokinin NK1 receptor gene contributes to the adult hypoxic facilitation of ventilation. Eur J Neurosci 2002 ; 16 : 2245–2252. [CrossRef] [PubMed] [Google Scholar]
  33. Manzke T, Guenther U, Ponimaskin EG, et al. 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 2003 ; 301 : 226–229. [CrossRef] [PubMed] [Google Scholar]
  34. Shao XM, Tan W, Xiu J, et al. Alpha4* nicotinic receptors in preBotzinger complex mediate cholinergic/nicotinic modulation of respiratory rhythm. J Neurosci 2008 ; 28 : 519–528. [CrossRef] [PubMed] [Google Scholar]
  35. Wallen-Mackenzie A, Gezelius H, Thoby-Brisson M, et al. Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor central pattern generation. J Neurosci 2006 ; 26 : 12294–12307. [CrossRef] [PubMed] [Google Scholar]
  36. Crone SA, Viemari JC, Droho S, et al. Irregular breathing in mice following genetic ablation of V2a neurons. J Neurosci 2012 ; 32 : 7895–7906. [CrossRef] [PubMed] [Google Scholar]
  37. Kuwana S, Tsunekawa N, Yanagawa Y, et al. Electrophysiological and morphological characteristics of GABAergic respiratory neurons in the mouse pre-Bötzinger complex. Eur J Neurosci 2006 ; 23 : 667–674. [CrossRef] [PubMed] [Google Scholar]
  38. Morgado-Valle C, Baca SM, Feldman JL. Glycinergic pacemaker neurons in preBötzinger complex of neonatal mouse. J Neurosci 2010 ; 30 : 3634–3639. [CrossRef] [PubMed] [Google Scholar]
  39. Doi A, Ramirez JM. State-dependent interactions between excitatory neuromodulators in the neuronal control of breathing. J Neurosci 2010 ; 30 : 8251–8262. [CrossRef] [PubMed] [Google Scholar]
  40. Vinit S. Lésions spinales cervicales et insuffisance respiratoire : un traitement révolutionnaire ? Med Sci (Paris) 2012 ; 28 : 33–36. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.