Free Access
Med Sci (Paris)
Volume 29, Number 10, Octobre 2013
Page(s) 868 - 874
Section M/S Revues
Published online 18 October 2013
  1. Zeng Q, Hong W. The emerging role of Hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 2008 ; 13 : 188–192. [CrossRef] [PubMed] [Google Scholar]
  2. Gilgenkrantz H. Voie Hippo-YAP et foie : bien plus qu’un simple contrôle de la taille. Med Sci (Paris) 2011 ; 27 : 479–481. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Kim NG, Koh E, Chen X, Gumbiner BM. E cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway component. Proc Natl Acad Sci USA 2011 ; 108 : 11930–11935. [CrossRef] [Google Scholar]
  4. Varelas X, Miller BW, Sopko R, et al. The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell 2010 ; 18 : 579–591. [CrossRef] [PubMed] [Google Scholar]
  5. Imajo M, Miyatake K, Iimura A, et al. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling. EMBO J 2012 ; 31 : 1109–1122. [CrossRef] [PubMed] [Google Scholar]
  6. Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 2011 ; 332 : 458–461. [CrossRef] [PubMed] [Google Scholar]
  7. Azzolin L, Zanconato F, Bresolin S, et al. Role of TAZ as mediator of Wnt signaling. Cell 2012 ; 151 : 1443–1456. [CrossRef] [PubMed] [Google Scholar]
  8. Bottomly D, Kyler SL, McWeeney SK, Yochum GS. Identification of beta-catenin binding regions in colon cancer cells using ChIP-Seq. Nucleic Acids Res 2010 ; 38 : 5735–5745. [CrossRef] [PubMed] [Google Scholar]
  9. Rosenbluh J, Nijhawan D, Cox AG, et al. beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 2012 ; 151 : 1457–1473. [CrossRef] [PubMed] [Google Scholar]
  10. Varelas X, Wrana JL. Coordinating developmental signaling: novel roles for the Hippo pathway. Trends Cell Biol 2012 ; 22 : 88–96. [CrossRef] [PubMed] [Google Scholar]
  11. Apte U, Thompson MD, Cui S, et al. Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology 2008 ; 47 : 288–295. [CrossRef] [PubMed] [Google Scholar]
  12. Yang W, Yan HX, Chen L, et al. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 2008 ; 68 : 4287–4295. [CrossRef] [PubMed] [Google Scholar]
  13. Hu M, Kurobe M, Jeong YJ, et al. Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology 2007 ; 133 : 1579–1591. [CrossRef] [PubMed] [Google Scholar]
  14. Spee B, Carpino G, Schotanus BA, et al. Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling. Gut 2010 ; 59 : 247–257. [CrossRef] [PubMed] [Google Scholar]
  15. Song H, Mak KK, Topol L, et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci USA 2010 ; 107 : 1431–1436. [CrossRef] [Google Scholar]
  16. Lee KP, Lee JH, Kim TS, et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci USA 2010 ; 107 : 8248–8253. [CrossRef] [Google Scholar]
  17. Barry ER, Camargo FD. The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Curr Opin Cell Biol 2013 ; 25 : 247–253. [CrossRef] [PubMed] [Google Scholar]
  18. Cai J, Zhang N, Zheng Y, et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev 2010 ; 24 : 2383–2388. [CrossRef] [PubMed] [Google Scholar]
  19. Camargo FD, Gokhale S, Johnnidis JB, et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 2007 ; 17 : 2054–2060. [CrossRef] [PubMed] [Google Scholar]
  20. Barry ER, Morikawa T, Butler BL, et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 2013 ; 493 : 106–110. [CrossRef] [PubMed] [Google Scholar]
  21. Itoh K, Brott BK, Bae GU, et al. Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. J Biol 2005 ; 4 : 3. [CrossRef] [PubMed] [Google Scholar]
  22. Xu MZ, Yao TJ, Lee NP, et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer 2009 ; 115 : 4576–4585. [CrossRef] [PubMed] [Google Scholar]
  23. Zender L, Spector MS, Xue W, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 2006 ; 125 : 1253–1267. [CrossRef] [PubMed] [Google Scholar]
  24. Benhamouche S, Curto M, Saotome I, et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev 2010 ; 24 : 1718–1730. [CrossRef] [PubMed] [Google Scholar]
  25. Tschaharganeh DJ, Chen X, Latzko P, et al. Yes-associated protein upregulates jagged-1 and activates the Notch pathway in human hepatocellular carcinoma. Gastroenterology 2013 ; 144 : 1530–1542. [CrossRef] [PubMed] [Google Scholar]
  26. Zhou D, Zhang Y, Wu H, et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci USA 2011 ; 108 : E1312–E1320. [CrossRef] [Google Scholar]
  27. Konsavage WM, Jr, Kyler SL, Rennoll SA, et al. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012 ; 287 : 11730–11739. [CrossRef] [PubMed] [Google Scholar]
  28. Liu-Chittenden Y, Huang B, Shim JS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012 ; 26 : 1300–1305. [CrossRef] [PubMed] [Google Scholar]
  29. Vermeulen L. Keeping stem cells in check: a hippo balancing act. Cell Stem Cell 2013 ; 12 : 3–5. [CrossRef] [PubMed] [Google Scholar]
  30. Oudhoff J, Freeman SA, Couzens AL, et al. Control of the Hippo pathway by Set7-dependent methylation of Yap. Dev Cell 2013 ; 26 : 188–194. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.