Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 10, Octobre 2013
Page(s) 875 - 882
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20132910015
Publié en ligne 18 octobre 2013
  1. Smith JC, Ellenberger HH, Ballanyi K, et al. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 1991 ; 254 : 726–729. [CrossRef] [PubMed]
  2. Blanchi B, Kelly LM, Viemari JC, et al. MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nat Neurosci 2003 ; 6 : 1091–1100. [CrossRef] [PubMed]
  3. Bouvier J, Thoby-Brisson M, Renier N, et al. Hindbrain interneurons and axon guidance signaling critical for breathing. Nat Neurosci 2010 ; 13 : 1066–1074. [CrossRef] [PubMed]
  4. Burgold T, Voituron N, Caganova M, et al. The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep 2012 ; 2 : 1244–1258. [CrossRef] [PubMed]
  5. Suzue T. Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat. J Physiol 1984 ; 354 : 173–183. [PubMed]
  6. Onimaru H, Homma I. Respiratory rhythm generator neurons in medulla of brainstem-spinal cord preparation from newborn rat. Brain Res 1987 ; 403 : 380–384. [CrossRef] [PubMed]
  7. Onimaru H, Arata A, Homma I. Primary respiratory rhythm generator in the medulla of brainstem-spinal cord preparation from newborn rat. Brain Res 1988 ; 445 : 314–324. [CrossRef] [PubMed]
  8. Onimaru H, Arata A, Homma I. Firing properties of respiratory rhythm generating neurons in the absence of synaptic transmission in rat medulla in vitro. Exp Brain Res 1989 ; 76 : 530–536. [CrossRef] [PubMed]
  9. Del Negro CA, Morgado-Valle C, Feldman JL. Respiratory rhythm: an emergent network property? Neuron 2002 ; 34 : 821–830. [CrossRef] [PubMed]
  10. Pena F, Parkis MA, Tryba AK, Ramirez JM. Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 2004 ; 43 : 105–117. [CrossRef] [PubMed]
  11. Del Negro CA, Morgado-Valle C, Hayes JA, et al. Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J Neurosci 2005 ; 25 : 446–453. [CrossRef] [PubMed]
  12. Viemari JC, Tryba AK. Bioaminergic neuromodulation of respiratory rhythm in vitro. Respir Physiol Neurobiol 2009 ; 168 : 69–75. [CrossRef]
  13. Viemari JC, Ramirez JM. Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. J Neurophysiol 2006 ; 95 : 2070–2082. [CrossRef] [PubMed]
  14. Di Pasquale E, Monteau R, Hilaire G. Involvement of the rostral ventro-lateral medulla in respiratory rhythm genesis during the peri-natal period: an in vitro study in newborn and fetal rats. Brain Res Dev Brain Res 1994 ; 78 : 243–252. [CrossRef] [PubMed]
  15. Bou-Flores C, Lajard AM, Monteau R, et al. Abnormal phrenic motoneuron activity and morphology in neonatal monoamine oxidase A-deficient transgenic mice: possible role of a serotonin excess. J Neurosci 2000 ; 20 : 4646–4656. [PubMed]
  16. Zanella S, Watrin F, Mebarek S, et al. Necdin plays a role in the serotonergic modulation of the mouse respiratory network: implication for Prader-Willi syndrome. J Neurosci 2008 ; 28 : 1745–1755. [CrossRef] [PubMed]
  17. Viemari JC, Bévengut M, Burnet H, et al. Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice. J Neurosci 2004 ; 24 : 928–937. [CrossRef] [PubMed]
  18. Viemari JC, Maussion G, Bévengut M, et al. Ret deficiency in mice impairs the development of A5 and A6 neurons and the functional maturation of the respiratory rhythm. Eur J Neurosci 2005 ; 22 : 2403–2412. [CrossRef] [PubMed]
  19. Hilaire G. Endogenous noradrenaline affects the maturation and function of the respiratory network: possible implication for SIDS. Auton Neurosci 2006 ; 126–127 : 320–31.
  20. Hilaire G, Voituron N, Menuet C, et al. The role of serotonin in respiratory function and dysfunction. Respir Physiol Neurobiol 2010 ; 174 : 76–88. [CrossRef]
  21. Paterson DS, Hilaire G, Weese-Mayer DE. Medullary serotonin defects and respiratory dysfunction in sudden infant death syndrome. Respir Physiol Neurobiol 2009 ; 168 : 133–143. [CrossRef]
  22. Thoby-Brisson M, Trinh J-B, Champagnat J, Fortin G. Emergence of the pre-Bötzinger respiratory rhythm generator in the mouse embryo. J Neurosci 2005 ; 25 : 4307–4318. [CrossRef] [PubMed]
  23. Champagnat J, Morin-Surun MP, Bouvier J, et al. Prenatal development of central rhythm generation. Respir Physiol Neurobiol 2011 ; 178 : 146–155. [CrossRef]
  24. Tan W, Janczewski WA, Yang P, et al. Silencing preBötzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nat Neurosci 2008 ; 11 : 538–540. [CrossRef] [PubMed]
  25. Tan W, Sherman D, Turesson J, et al. Reelin demarcates a subset of pre-Bötzinger complex neurons in adult rat. J Comp Neurol 2012 ; 520 : 606–619. [CrossRef] [PubMed]
  26. Schwarzacher SW, Rüb U, Deller T. Neuroanatomical characteristics of the human pre-Bötzinger complex and its involvement in neurodegenerative brainstem diseases. Brain 2011 ; 134 : 24–35. [CrossRef] [PubMed]
  27. Dubreuil V, Thoby-Brisson M, Rallu M, et al. Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci 2009 ; 29 : 14836–14846. [CrossRef] [PubMed]
  28. Caubit X, Thoby-Brisson M, Voituron N, et al. Teashirt 3 regulates development of neurons involved in both respiratory rhythm and airflow control. J Neurosci 2010 ; 30 : 9465–9476. [CrossRef] [PubMed]
  29. Dutschmann M, Menuet C, Stettner GM, et al. Upper airway dysfunction of Tau-P301L mice correlates with tauopathy in midbrain and ponto-medullary brainstem nuclei. J Neurosci 2010 ; 30 : 1810–1821. [CrossRef] [PubMed]
  30. Menuet C, Borghgraef P, Matarazzo V, et al. Raphé tauopathy alters serotonin metabolism and breathing activity in terminal Tau.P301L mice: possible implications for tauopathies and Alzheimer’s disease. Respir Physiol Neurobiol 2011 ; 178 : 290–303. [CrossRef]
  31. Gray PA, Rekling JC, Bocchiaro CM, Feldman JL. Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBötzinger complex. Science 1999 ; 286 : 1566–1568. [CrossRef] [PubMed]
  32. Ptak K, Burnet H, Blanchi B, et al. The murine neurokinin NK1 receptor gene contributes to the adult hypoxic facilitation of ventilation. Eur J Neurosci 2002 ; 16 : 2245–2252. [CrossRef] [PubMed]
  33. Manzke T, Guenther U, Ponimaskin EG, et al. 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 2003 ; 301 : 226–229. [CrossRef] [PubMed]
  34. Shao XM, Tan W, Xiu J, et al. Alpha4* nicotinic receptors in preBotzinger complex mediate cholinergic/nicotinic modulation of respiratory rhythm. J Neurosci 2008 ; 28 : 519–528. [CrossRef] [PubMed]
  35. Wallen-Mackenzie A, Gezelius H, Thoby-Brisson M, et al. Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor central pattern generation. J Neurosci 2006 ; 26 : 12294–12307. [CrossRef] [PubMed]
  36. Crone SA, Viemari JC, Droho S, et al. Irregular breathing in mice following genetic ablation of V2a neurons. J Neurosci 2012 ; 32 : 7895–7906. [CrossRef] [PubMed]
  37. Kuwana S, Tsunekawa N, Yanagawa Y, et al. Electrophysiological and morphological characteristics of GABAergic respiratory neurons in the mouse pre-Bötzinger complex. Eur J Neurosci 2006 ; 23 : 667–674. [CrossRef] [PubMed]
  38. Morgado-Valle C, Baca SM, Feldman JL. Glycinergic pacemaker neurons in preBötzinger complex of neonatal mouse. J Neurosci 2010 ; 30 : 3634–3639. [CrossRef] [PubMed]
  39. Doi A, Ramirez JM. State-dependent interactions between excitatory neuromodulators in the neuronal control of breathing. J Neurosci 2010 ; 30 : 8251–8262. [CrossRef] [PubMed]
  40. Vinit S. Lésions spinales cervicales et insuffisance respiratoire : un traitement révolutionnaire ? Med Sci (Paris) 2012 ; 28 : 33–36. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.