Free Access
Issue
Med Sci (Paris)
Volume 29, Number 8-9, Août–Septembre 2013
Page(s) 715 - 721
Section Diabète : approches thérapeutiques émergentes
DOI https://doi.org/10.1051/medsci/2013298009
Published online 05 September 2013
  1. Stein DT, Esser V, Stevenson BE, et al. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest 1996 ; 97 : 2728–2735. [CrossRef] [PubMed] [Google Scholar]
  2. Nolan CJ, Madiraju MS, Delghingaro-Augusto V, et al. Fatty acid signaling in the {beta}-cell and insulin secretion. Diabetes 2006 ; 55 : S16–23. [CrossRef] [PubMed] [Google Scholar]
  3. Briscoe CP, Tadayyon M, Andrews JL, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 2003 ; 278 : 11303–11311. [CrossRef] [PubMed] [Google Scholar]
  4. Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 2003 ; 422 : 173–176. [CrossRef] [PubMed] [Google Scholar]
  5. Hirasawa A, Tsumaya K, Awaji T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005 ; 11 : 90–94. [CrossRef] [PubMed] [Google Scholar]
  6. Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 2003 ; 303 : 1047–1052. [CrossRef] [PubMed] [Google Scholar]
  7. Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003 ; 278 : 25481–25489. [CrossRef] [PubMed] [Google Scholar]
  8. Wang J, Wu X, Simonavicius N, et al. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 2006 ; 281 : 34457–34464. [CrossRef] [PubMed] [Google Scholar]
  9. Overton HA, Babbs AJ, Doel SM, et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 2006 ; 3 : 167–175. [CrossRef] [PubMed] [Google Scholar]
  10. Mancini AD, Poitout V. The fatty acid receptor FFA1/GPR40 a decade later : how much do we know? Trends Endocrinol Metab 2013 ; doi : 10.1016/j.tem.2013.03.003. [Google Scholar]
  11. Nagasumi K, Esaki R, Iwachidow K, et al. Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes 2009 ; 58 : 1067–1076. [CrossRef] [PubMed] [Google Scholar]
  12. Vettor R, Granzotto M, De Stefani D, et al. Loss-of-function mutation of the GPR40 gene associates with abnormal stimulated insulin secretion by acting on intracellular calcium mobilization. J Clin Endocrinol Metab 2008 ; 93 : 3541–3550. [CrossRef] [PubMed] [Google Scholar]
  13. Poitout V, Amyot J, Semache M, et al. Glucolipotoxicity of the pancreatic beta cell. Biochim Biophys Acta 2010 ; 1801 : 289–298. [CrossRef] [PubMed] [Google Scholar]
  14. Steneberg P, Rubins N, Bartoov-Shifman R, et al. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metabol 2005 ; 1 : 245–258. [CrossRef] [Google Scholar]
  15. Alquier T, Poitout V. GPR40 : good cop, bad cop? Diabetes 2009 ; 58 : 1035–1036. [CrossRef] [PubMed] [Google Scholar]
  16. Tan CP, Feng Y, Zhou YP, et al. Selective small-molecule agonists of G protein-coupled receptor 40 promote glucose-dependent insulin secretion and reduce blood glucose in mice. Diabetes 2008 ; 57 : 2211–2219. [CrossRef] [PubMed] [Google Scholar]
  17. Tsujihata Y, Ito R, Suzuki M, et al. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J Pharmacol Exp Ther 2011 ; 339 : 228–237. [CrossRef] [PubMed] [Google Scholar]
  18. Lin DC, Zhang J, Zhuang R, et al. AMG 837 : a novel GPR40/FFA1 agonist that enhances insulin secretion and lowers glucose levels in rodents. PLoS One 2011 ; 6 : e27270. [CrossRef] [PubMed] [Google Scholar]
  19. Luo J, Swaminath G, Brown SP, et al. A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS One 2012 ; 7 : e46300. [CrossRef] [PubMed] [Google Scholar]
  20. Burant CF, Viswanathan P, Marcinak J, et al. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus : a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 2012 ; 379 : 1403–1411. [CrossRef] [PubMed] [Google Scholar]
  21. Kaku K, Araki T, Yoshinaka R. Randomized, double-Blind, dose-ranging study of TAK-875, a novel GPR40 agonist, in Japanese patients with inadequately controlled type 2 diabetes. Diabetes Care 2013 ; 36 : 245–250. [CrossRef] [PubMed] [Google Scholar]
  22. Liou AP, Lu X, Sei Y, et al. The G protein-coupled receptor GPR40 directly mediates long chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 2011 ; 140 : 903–912. [CrossRef] [PubMed] [Google Scholar]
  23. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 2008 ; 57 : 2280–2287. [CrossRef] [PubMed] [Google Scholar]
  24. Flodgren E, Olde B, Meidute-Abaraviciene S, et al. GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochem Biophys Res Commun 2007 ; 354 : 240–245. [CrossRef] [PubMed] [Google Scholar]
  25. Hirasawa A, Itsubo C, Sadakane K, et al. Production and characterization of a monoclonal antibody against GPR40 (FFAR1; free fatty acid receptor 1). Biochem Biophys Res Commun 2008 ; 365 : 22–28. [CrossRef] [PubMed] [Google Scholar]
  26. Wang L, Zhao Y, Gui B, et al. Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+]i increase in pancreatic islet (alpha)-cells. J Endocrinol 2011 ; 210 : 173–179. [CrossRef] [PubMed] [Google Scholar]
  27. Yashiro H, Tsujihata Y, Takeuchi K, et al. The effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid 1 agonist, on insulin and glucagon secretion in isolated rat and human islets. J Pharmacol Exp Ther 2012 ; 340 : 483–489. [CrossRef] [PubMed] [Google Scholar]
  28. Tanaka T, Katsuma S, Adachi T, et al. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn-Schmiedeberg’s Arch Pharmacol 2008 ; 377 : 523–527. [CrossRef] [Google Scholar]
  29. Oh da Y, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010 ; 142 : 687–698. [CrossRef] [PubMed] [Google Scholar]
  30. Ichimura A, Hirasawa A, Poulain-Godefroy O, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 2012 ; 483 : 350–354. [CrossRef] [PubMed] [Google Scholar]
  31. Kebede MA, Alquier T, Latour MG, Poitout V. Lipid receptors and islet function : therapeutic implications? Diabetes Obes Metab 2009 ; 11 : 10–20. [CrossRef] [Google Scholar]
  32. Taneera J, Lang S, Sharma A, et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metabolism 2012 ; 16 : 122–134. [CrossRef] [PubMed] [Google Scholar]
  33. Martin C, Passilly-Degrace P, Chevrot M, et al. Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae : putative involvement of GPR120 and impact on taste sensitivity. J Lipid Res 2012 ; 53 : 2256–2265. [CrossRef] [PubMed] [Google Scholar]
  34. Kaji I, Karaki S, Tanaka R, Kuwahara A. Density distribution of free fatty acid receptor 2 (FFA2)-expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine, and increased cell numbers after ingestion of fructo-oligosaccharide. J Mol Histol 2011 ; 42 : 27–38. [CrossRef] [PubMed] [Google Scholar]
  35. Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012 ; 61 : 364–371. [CrossRef] [PubMed] [Google Scholar]
  36. Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003 ; 278 : 11312–11319. [CrossRef] [PubMed] [Google Scholar]
  37. Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009 ; 461 : 1282–1286. [CrossRef] [PubMed] [Google Scholar]
  38. Hong YH, Nishimura Y, Hishikawa D, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 2005 ; 146 : 5092–5099. [CrossRef] [PubMed] [Google Scholar]
  39. Zaibi MS, Stocker CJ, O’Dowd J, et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 2010 ; 584 : 2381–2386. [CrossRef] [PubMed] [Google Scholar]
  40. Ge H, Li X, Weiszmann J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 2008 ; 149 : 4519–4526. [CrossRef] [PubMed] [Google Scholar]
  41. Ximenes HMA, Hirata AE, Rocha MS, et al. Propionate inhibits glucose-induced insulin secretion in isolated rat pancreatic islets. Cell Biochem Funct 2007 ; 25 : 173–178. [CrossRef] [PubMed] [Google Scholar]
  42. Schmidt J, Smith NJ, Christiansen E, et al. Selective orthosteric free fatty acid receptor 2 (FFA2) agonists : identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J Biol Chem 2011 ; 286 : 10628–10640. [CrossRef] [PubMed] [Google Scholar]
  43. Chu ZL, Jones RM, He H, et al. A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology 2007 ; 148 : 2601–2609. [CrossRef] [PubMed] [Google Scholar]
  44. Chu ZL, Carroll C, Chen R, et al. N-oleoyldopamine enhances glucose homeostasis through the activation of GPR119. Mol Endocrinol 2010 ; 24 : 161–170. [CrossRef] [PubMed] [Google Scholar]
  45. Lauffer LM, Iakoubov R, Brubaker PL. GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 2009 ; 58 : 1058–1066. [CrossRef] [PubMed] [Google Scholar]
  46. Lan H, Vassileva G, Corona A, et al. GPR119 is required for physiological regulation of glucagon-like peptide-1 secretion but not for metabolic homeostasis. J Endocrinol 2009 ; 201 : 219–230. [CrossRef] [PubMed] [Google Scholar]
  47. Alquier T, Peyot ML, Latour MG, et al. Deletion of GPR40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets. Diabetes 2009 ; 58 : 2607–2615. [CrossRef] [PubMed] [Google Scholar]
  48. Ferdaoussi M, Bergeron V, Zarrouki B, et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 2012 ; 55 : 2682–2692. [CrossRef] [PubMed] [Google Scholar]
  49. Watson SJ, Brown AJH, Holliday ND. Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 2012 ; 81 : 631–642. [CrossRef] [PubMed] [Google Scholar]
  50. Ning Y, O’Neill K, Lan H, et al. Endogenous and synthetic agonists of GPR119 differ in signalling pathways and their effects on insulin secretion in MIN6c4 insulinoma cells. Br J Pharmacol 2008 ; 155 : 1056–1065. [CrossRef] [PubMed] [Google Scholar]
  51. Naik H, Vakilynejad M, Wu J, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamic properties of the GPR40 agonist TAK-875 : results from a double-blind, placebo-controlled single oral dose rising study in healthy volunteers. J Clin Pharmacol 2012 ; 52 : 1007–1016. [CrossRef] [PubMed] [Google Scholar]
  52. Lin DC, Guo Q, Luo J, et al. Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor. Mol Pharmacol 2012 ; 82 : 843–859. [CrossRef] [PubMed] [Google Scholar]
  53. Ohishi T, Yoshida S. The therapeutic potential of GPR119 agonists for type 2 diabetes. Expert Opin Investig Drugs 2012 ; 21 : 321–328. [CrossRef] [PubMed] [Google Scholar]
  54. Lauffer L, Iakoubov R, Brubaker PL. GPR119 : Double-dipping for better glycemic control. Endocrinology 2008 ; 149 : 2035–2037. [CrossRef] [PubMed] [Google Scholar]
  55. Katz LB, Gambale JJ, Rothenberg PL, et al. Effects of JNJ-38431055, a novel GPR119 receptor agonist, in randomized, double-blind, placebo-controlled studies in subjects with type 2 diabetes. Diabetes Obes Metab 2012 ; 14 : 709–716. [CrossRef] [PubMed] [Google Scholar]
  56. Ulven T. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocrinol 2012 ; 3 : 111. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.