Accès gratuit
Med Sci (Paris)
Volume 29, Numéro 8-9, Août–Septembre 2013
Page(s) 715 - 721
Section Diabète : approches thérapeutiques émergentes
Publié en ligne 5 septembre 2013
  1. Stein DT, Esser V, Stevenson BE, et al. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest 1996 ; 97 : 2728–2735. [CrossRef] [PubMed] [Google Scholar]
  2. Nolan CJ, Madiraju MS, Delghingaro-Augusto V, et al. Fatty acid signaling in the {beta}-cell and insulin secretion. Diabetes 2006 ; 55 : S16–23. [CrossRef] [PubMed] [Google Scholar]
  3. Briscoe CP, Tadayyon M, Andrews JL, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 2003 ; 278 : 11303–11311. [CrossRef] [PubMed] [Google Scholar]
  4. Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 2003 ; 422 : 173–176. [CrossRef] [PubMed] [Google Scholar]
  5. Hirasawa A, Tsumaya K, Awaji T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005 ; 11 : 90–94. [CrossRef] [PubMed] [Google Scholar]
  6. Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 2003 ; 303 : 1047–1052. [CrossRef] [PubMed] [Google Scholar]
  7. Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003 ; 278 : 25481–25489. [CrossRef] [PubMed] [Google Scholar]
  8. Wang J, Wu X, Simonavicius N, et al. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 2006 ; 281 : 34457–34464. [CrossRef] [PubMed] [Google Scholar]
  9. Overton HA, Babbs AJ, Doel SM, et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 2006 ; 3 : 167–175. [CrossRef] [PubMed] [Google Scholar]
  10. Mancini AD, Poitout V. The fatty acid receptor FFA1/GPR40 a decade later : how much do we know? Trends Endocrinol Metab 2013 ; doi : 10.1016/j.tem.2013.03.003. [Google Scholar]
  11. Nagasumi K, Esaki R, Iwachidow K, et al. Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes 2009 ; 58 : 1067–1076. [CrossRef] [PubMed] [Google Scholar]
  12. Vettor R, Granzotto M, De Stefani D, et al. Loss-of-function mutation of the GPR40 gene associates with abnormal stimulated insulin secretion by acting on intracellular calcium mobilization. J Clin Endocrinol Metab 2008 ; 93 : 3541–3550. [CrossRef] [PubMed] [Google Scholar]
  13. Poitout V, Amyot J, Semache M, et al. Glucolipotoxicity of the pancreatic beta cell. Biochim Biophys Acta 2010 ; 1801 : 289–298. [CrossRef] [PubMed] [Google Scholar]
  14. Steneberg P, Rubins N, Bartoov-Shifman R, et al. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metabol 2005 ; 1 : 245–258. [CrossRef] [Google Scholar]
  15. Alquier T, Poitout V. GPR40 : good cop, bad cop? Diabetes 2009 ; 58 : 1035–1036. [CrossRef] [PubMed] [Google Scholar]
  16. Tan CP, Feng Y, Zhou YP, et al. Selective small-molecule agonists of G protein-coupled receptor 40 promote glucose-dependent insulin secretion and reduce blood glucose in mice. Diabetes 2008 ; 57 : 2211–2219. [CrossRef] [PubMed] [Google Scholar]
  17. Tsujihata Y, Ito R, Suzuki M, et al. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J Pharmacol Exp Ther 2011 ; 339 : 228–237. [CrossRef] [PubMed] [Google Scholar]
  18. Lin DC, Zhang J, Zhuang R, et al. AMG 837 : a novel GPR40/FFA1 agonist that enhances insulin secretion and lowers glucose levels in rodents. PLoS One 2011 ; 6 : e27270. [CrossRef] [PubMed] [Google Scholar]
  19. Luo J, Swaminath G, Brown SP, et al. A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS One 2012 ; 7 : e46300. [CrossRef] [PubMed] [Google Scholar]
  20. Burant CF, Viswanathan P, Marcinak J, et al. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus : a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 2012 ; 379 : 1403–1411. [CrossRef] [PubMed] [Google Scholar]
  21. Kaku K, Araki T, Yoshinaka R. Randomized, double-Blind, dose-ranging study of TAK-875, a novel GPR40 agonist, in Japanese patients with inadequately controlled type 2 diabetes. Diabetes Care 2013 ; 36 : 245–250. [CrossRef] [PubMed] [Google Scholar]
  22. Liou AP, Lu X, Sei Y, et al. The G protein-coupled receptor GPR40 directly mediates long chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 2011 ; 140 : 903–912. [CrossRef] [PubMed] [Google Scholar]
  23. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 2008 ; 57 : 2280–2287. [CrossRef] [PubMed] [Google Scholar]
  24. Flodgren E, Olde B, Meidute-Abaraviciene S, et al. GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochem Biophys Res Commun 2007 ; 354 : 240–245. [CrossRef] [PubMed] [Google Scholar]
  25. Hirasawa A, Itsubo C, Sadakane K, et al. Production and characterization of a monoclonal antibody against GPR40 (FFAR1; free fatty acid receptor 1). Biochem Biophys Res Commun 2008 ; 365 : 22–28. [CrossRef] [PubMed] [Google Scholar]
  26. Wang L, Zhao Y, Gui B, et al. Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+]i increase in pancreatic islet (alpha)-cells. J Endocrinol 2011 ; 210 : 173–179. [CrossRef] [PubMed] [Google Scholar]
  27. Yashiro H, Tsujihata Y, Takeuchi K, et al. The effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid 1 agonist, on insulin and glucagon secretion in isolated rat and human islets. J Pharmacol Exp Ther 2012 ; 340 : 483–489. [CrossRef] [PubMed] [Google Scholar]
  28. Tanaka T, Katsuma S, Adachi T, et al. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn-Schmiedeberg’s Arch Pharmacol 2008 ; 377 : 523–527. [CrossRef] [Google Scholar]
  29. Oh da Y, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010 ; 142 : 687–698. [CrossRef] [PubMed] [Google Scholar]
  30. Ichimura A, Hirasawa A, Poulain-Godefroy O, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 2012 ; 483 : 350–354. [CrossRef] [PubMed] [Google Scholar]
  31. Kebede MA, Alquier T, Latour MG, Poitout V. Lipid receptors and islet function : therapeutic implications? Diabetes Obes Metab 2009 ; 11 : 10–20. [CrossRef] [Google Scholar]
  32. Taneera J, Lang S, Sharma A, et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metabolism 2012 ; 16 : 122–134. [CrossRef] [PubMed] [Google Scholar]
  33. Martin C, Passilly-Degrace P, Chevrot M, et al. Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae : putative involvement of GPR120 and impact on taste sensitivity. J Lipid Res 2012 ; 53 : 2256–2265. [CrossRef] [PubMed] [Google Scholar]
  34. Kaji I, Karaki S, Tanaka R, Kuwahara A. Density distribution of free fatty acid receptor 2 (FFA2)-expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine, and increased cell numbers after ingestion of fructo-oligosaccharide. J Mol Histol 2011 ; 42 : 27–38. [CrossRef] [PubMed] [Google Scholar]
  35. Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012 ; 61 : 364–371. [CrossRef] [PubMed] [Google Scholar]
  36. Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003 ; 278 : 11312–11319. [CrossRef] [PubMed] [Google Scholar]
  37. Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009 ; 461 : 1282–1286. [CrossRef] [PubMed] [Google Scholar]
  38. Hong YH, Nishimura Y, Hishikawa D, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 2005 ; 146 : 5092–5099. [CrossRef] [PubMed] [Google Scholar]
  39. Zaibi MS, Stocker CJ, O’Dowd J, et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 2010 ; 584 : 2381–2386. [CrossRef] [PubMed] [Google Scholar]
  40. Ge H, Li X, Weiszmann J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 2008 ; 149 : 4519–4526. [CrossRef] [PubMed] [Google Scholar]
  41. Ximenes HMA, Hirata AE, Rocha MS, et al. Propionate inhibits glucose-induced insulin secretion in isolated rat pancreatic islets. Cell Biochem Funct 2007 ; 25 : 173–178. [CrossRef] [PubMed] [Google Scholar]
  42. Schmidt J, Smith NJ, Christiansen E, et al. Selective orthosteric free fatty acid receptor 2 (FFA2) agonists : identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J Biol Chem 2011 ; 286 : 10628–10640. [CrossRef] [PubMed] [Google Scholar]
  43. Chu ZL, Jones RM, He H, et al. A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology 2007 ; 148 : 2601–2609. [CrossRef] [PubMed] [Google Scholar]
  44. Chu ZL, Carroll C, Chen R, et al. N-oleoyldopamine enhances glucose homeostasis through the activation of GPR119. Mol Endocrinol 2010 ; 24 : 161–170. [CrossRef] [PubMed] [Google Scholar]
  45. Lauffer LM, Iakoubov R, Brubaker PL. GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 2009 ; 58 : 1058–1066. [CrossRef] [PubMed] [Google Scholar]
  46. Lan H, Vassileva G, Corona A, et al. GPR119 is required for physiological regulation of glucagon-like peptide-1 secretion but not for metabolic homeostasis. J Endocrinol 2009 ; 201 : 219–230. [CrossRef] [PubMed] [Google Scholar]
  47. Alquier T, Peyot ML, Latour MG, et al. Deletion of GPR40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets. Diabetes 2009 ; 58 : 2607–2615. [CrossRef] [PubMed] [Google Scholar]
  48. Ferdaoussi M, Bergeron V, Zarrouki B, et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 2012 ; 55 : 2682–2692. [CrossRef] [PubMed] [Google Scholar]
  49. Watson SJ, Brown AJH, Holliday ND. Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 2012 ; 81 : 631–642. [CrossRef] [PubMed] [Google Scholar]
  50. Ning Y, O’Neill K, Lan H, et al. Endogenous and synthetic agonists of GPR119 differ in signalling pathways and their effects on insulin secretion in MIN6c4 insulinoma cells. Br J Pharmacol 2008 ; 155 : 1056–1065. [CrossRef] [PubMed] [Google Scholar]
  51. Naik H, Vakilynejad M, Wu J, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamic properties of the GPR40 agonist TAK-875 : results from a double-blind, placebo-controlled single oral dose rising study in healthy volunteers. J Clin Pharmacol 2012 ; 52 : 1007–1016. [CrossRef] [PubMed] [Google Scholar]
  52. Lin DC, Guo Q, Luo J, et al. Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor. Mol Pharmacol 2012 ; 82 : 843–859. [CrossRef] [PubMed] [Google Scholar]
  53. Ohishi T, Yoshida S. The therapeutic potential of GPR119 agonists for type 2 diabetes. Expert Opin Investig Drugs 2012 ; 21 : 321–328. [CrossRef] [PubMed] [Google Scholar]
  54. Lauffer L, Iakoubov R, Brubaker PL. GPR119 : Double-dipping for better glycemic control. Endocrinology 2008 ; 149 : 2035–2037. [CrossRef] [PubMed] [Google Scholar]
  55. Katz LB, Gambale JJ, Rothenberg PL, et al. Effects of JNJ-38431055, a novel GPR119 receptor agonist, in randomized, double-blind, placebo-controlled studies in subjects with type 2 diabetes. Diabetes Obes Metab 2012 ; 14 : 709–716. [CrossRef] [PubMed] [Google Scholar]
  56. Ulven T. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocrinol 2012 ; 3 : 111. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.