Free Access
Issue
Med Sci (Paris)
Volume 29, Number 2, Février 2013
Page(s) 165 - 173
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013292014
Published online 28 February 2013
  1. Dock G. The influence of complicating diseases upon leukemia. Am J Med Sci 1904 ; 127 : 563–592. [CrossRef] [Google Scholar]
  2. Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther ; 15 : 651–659. [Google Scholar]
  3. Sinkovics JG, Horvath JC. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers. Arch Immunol Ther Exp 2008 ; 56 Suppl 1 : 3s–59s. [CrossRef] [Google Scholar]
  4. Asada T. Treatment of human cancer with mumps virus. Cancer 1974 ; 34 : 1907–1928. [CrossRef] [PubMed] [Google Scholar]
  5. Breitbach CJ, Paterson JM, Lemay CG, et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther 2007 ; 15 : 1686–1693. [Google Scholar]
  6. Stanford MM, Breitbach CJ, Bell JC, McFadden G. Innate immunity, tumor microenvironment and oncolytic virus therapy: friends or foes? Curr Opin Mol Ther 2008 ; 10 : 32–37. [PubMed] [Google Scholar]
  7. Alemany R. Cancer selective adenoviruses. Mol Aspects Med 2007 ; 28 : 42–58. [CrossRef] [PubMed] [Google Scholar]
  8. Stojdl DF, Lichty B, Knowles S, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000 ; 6 : 821–825. [CrossRef] [PubMed] [Google Scholar]
  9. Stojdl DF, Lichty BD, tenOever BR, et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 2003 ; 4 : 263–275. [CrossRef] [PubMed] [Google Scholar]
  10. Whitman ED, Tsung K, Paxson J, Norton JA. In vitro and in vivo kinetics of recombinant vaccinia virus cancer-gene therapy. Surgery 1994 ; 116 : 183–188. [PubMed] [Google Scholar]
  11. Gnant MF, Puhlmann M, Alexander HR, Jr., Bartlett DL. Systemic administration of a recombinant vaccinia virus expressing the cytosine deaminase gene and subsequent treatment with 5-fluorocytosine leads to tumor-specific gene expression and prolongation of survival in mice. Cancer Res 1999 ; 59 : 3396–3403. [PubMed] [Google Scholar]
  12. Brun J, McManus D, Lefebvre C, et al. Identification of genetically modified Maraba virus as an oncolytic rhabdovirus. Mol Ther 2010 ; 18 : 40–49. [CrossRef] [Google Scholar]
  13. Thorne SH, Hwang TH, O’Gorman WE, et al. Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963. J Clin Invest 2007 ; 117 : 3350–3358. [CrossRef] [PubMed] [Google Scholar]
  14. Naik S, Nace R, Barber GN, Russell SJ. Potent systemic therapy of multiple myeloma utilizing oncolytic vesicular stomatitis virus coding for interferon-beta. Cancer Gene Ther 2012 ; 19 : 443–450. [CrossRef] [PubMed] [Google Scholar]
  15. Zamarin D, Martinez-Sobrido L, Kelly K, et al. Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Mol Ther 2009 ; 17 : 697–706. [CrossRef] [PubMed] [Google Scholar]
  16. Kirn DH, Wang Y, Liang W, et al. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res 2008 ; 68 : 2071–2075. [CrossRef] [PubMed] [Google Scholar]
  17. Jin J, Liu H, Yang C, et al. Effective gene-viral therapy of leukemia by a new fiber chimeric oncolytic adenovirus expressing TRAIL: in vitro and in vivo evaluation. Mol Cancer Ther 2009 ; 8 : 1387–1397. [CrossRef] [PubMed] [Google Scholar]
  18. Ungerechts G, Springfeld C, Frenzke ME, et al. Lymphoma chemovirotherapy: CD20-targeted and convertase-armed measles virus can synergize with fludarabine. Cancer Res 2007 ; 67 : 10939–10947. [CrossRef] [PubMed] [Google Scholar]
  19. Dingli D, Peng KW, Harvey ME, et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004 ; 103 : 1641–1646. [CrossRef] [PubMed] [Google Scholar]
  20. Liu C, Russell SJ, Peng KW. Systemic therapy of disseminated myeloma in passively immunized mice using measles virus-infected cell carriers. Mol Ther 2010 ; 18 : 1155–1164. [CrossRef] [PubMed] [Google Scholar]
  21. Pol J, Rességuier J, Lichty B. Oncolytic viruses: a step into cancer immunotherapy. Virus Adaptation and Treatment 2012 ; 4 : 1–21. [Google Scholar]
  22. Lee JH, Roh MS, Lee YK, et al. Oncolytic and immunostimulatory efficacy of a targeted oncolytic poxvirus expressing human GM-CSF following intravenous administration in a rabbit tumor model. Cancer Gene Ther 2009 ; 17 : 73–79. [PubMed] [Google Scholar]
  23. Lei N, Shen FB, Chang JH, et al. An oncolytic adenovirus expressing granulocyte macrophage colony-stimulating factor shows improved specificity and efficacy for treating human solid tumors. Cancer Gene Ther 2009 ; 16 : 33–43. [CrossRef] [PubMed] [Google Scholar]
  24. Kaur B, Cripe TP, Chiocca EA. “Buy one get one free”: armed viruses for the treatment of cancer cells and their microenvironment. Curr Gene Ther 2009 ; 9 : 341–355. [CrossRef] [PubMed] [Google Scholar]
  25. Jarnagin WR, Zager JS, Klimstra D, et al. Neoadjuvant treatment of hepatic malignancy: an oncolytic herpes simplex virus expressing IL-12 effectively treats the parent tumor and protects against recurrence-after resection. Cancer Gene Ther 2003 ; 10 : 215–223. [CrossRef] [PubMed] [Google Scholar]
  26. Wong RJ, Chan MK, Yu Z, et al. Effective intravenous therapy of murine pulmonary metastases with an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res 2004 ; 10 : 251–259. [CrossRef] [PubMed] [Google Scholar]
  27. Varghese S, Rabkin SD, Liu R, et al. Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. Cancer Gene Ther 2006 ; 13 : 253–265. [CrossRef] [PubMed] [Google Scholar]
  28. Parker JN, Gillespie GY, Love CE, et al. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 2000 ; 97 : 2208–2213. [CrossRef] [Google Scholar]
  29. Huang JH, Zhang SN, Choi KJ, et al. Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4–1BBL. Mol Ther 2010 ; 18 : 264–274. [CrossRef] [PubMed] [Google Scholar]
  30. Fukuhara H, Ino Y, Kuroda T, et al. Triple gene-deleted oncolytic herpes simplex virus vector double-armed with interleukin 18 and soluble B7–1 constructed by bacterial artificial chromosome-mediated system. Cancer Res 2005 ; 65 : 10663–10668. [CrossRef] [PubMed] [Google Scholar]
  31. Bridle BW, Stephenson KB, Boudreau JE, et al. Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther 2010 ; 184 : 4269–4275. [Google Scholar]
  32. Castelo-Branco P, Passer BJ, Buhrman JS, et al. Oncolytic herpes simplex virus armed with xenogeneic homologue of prostatic acid phosphatase enhances antitumor efficacy in prostate cancer. Gene Ther 2010 ; 17 : 805–810. [CrossRef] [PubMed] [Google Scholar]
  33. Ottolino-Perry K, Diallo JS, Lichty BD, et al. Intelligent design: combination therapy with oncolytic viruses. Mol Ther 2010 ; 18 : 251–263. [CrossRef] [PubMed] [Google Scholar]
  34. Le Boeuf F, Diallo JS, McCart JA, et al. Synergistic interaction between oncolytic viruses augments tumor killing. Mol Ther 2010 ; 18 : 888–895. [CrossRef] [PubMed] [Google Scholar]
  35. Nguyen TL, Wilson MG, Hiscott J. Oncolytic viruses and histone deacetylase inhibitors-a multi-pronged strategy to target tumor cells. Cytokine Growth Factor Rev 2010 ; 21 : 153–159. [CrossRef] [PubMed] [Google Scholar]
  36. Ikeda K, Ichikawa T, Wakimoto H, et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 1999 ; 5 : 881–887. [CrossRef] [PubMed] [Google Scholar]
  37. Diallo JS, Le Bœuf F, Lai F, et al. A high-throughput pharmacoviral approach identifies novel oncolytic virus sensitizers. Mol Ther 2010 ; 18 : 1123–1129. [CrossRef] [PubMed] [Google Scholar]
  38. Passer BJ, Cheema T, Zhou B, et al. Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication. Cancer Res 2010 ; 70 : 3890–3895. [CrossRef] [PubMed] [Google Scholar]
  39. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol 2012 ; 30 : 658–670. [Google Scholar]
  40. Breitbach CJ, Burke J, Jonker D, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 2011 ; 477 : 99–102. [CrossRef] [PubMed] [Google Scholar]
  41. Touchefeu Y, Schick U, Harrington KJ. Le virus de la rougeole - Un futur traitement en cancérologie? Med Sci (Paris) 2012 ; 28 : 388–394. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Lemay G. Apprivoiser nos ennemis pour en faire des alliés : la « virothérapie » anticancéreuse. Med Sci (Paris) 2012 ; 28 : 339–340. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Janelle V, Poliquin L, Lamarre A. Le virus de la stomatite vésiculaire dans la lutte contre le cancer. Med Sci (Paris) 2013, 29 : 175–182. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.