Free Access
Med Sci (Paris)
Volume 28, Number 6-7, Juin–Juillet 2012
Page(s) 639 - 645
Section M/S Revues
Published online 16 July 2012
  1. Rowbotham TJ. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 1980 ; 33 : 1179–1183. [Google Scholar]
  2. Holden EP, Winkler HH, Wood DO, et al. Intracellular growth of Legionella pneumophila within Acanthamoeba castellanii Neff. Infect Immun 1984 ; 45 : 18–24. [PubMed] [Google Scholar]
  3. Philippe C, Blech MF, Hartemann P. Multiplication intra-amibienne de Legionella pneumophila et rôle potentiel des amibes dans la transmission de la légionellose. Med Mal Infect 2006 ; 36 : 196–200. [CrossRef] [PubMed] [Google Scholar]
  4. Maruta K, Miyamoto H, Hamada T, et al. Entry and intracellular growth of Legionella dumoffii in alveolar epithelial cells. Am J Respir Crit Care Med 1998 ; 157 : 1967–1974. [CrossRef] [PubMed] [Google Scholar]
  5. Cazalet C, Rusniok C, Brüggemann H, et al. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 2004 ; 36 : 1165–1173. [CrossRef] [PubMed] [Google Scholar]
  6. Hubber A, Roy CR. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 2010 ; 26 : 261–283. [CrossRef] [PubMed] [Google Scholar]
  7. Girard R, Pedron T, Uematsu S, et al. Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J Cell Sci 2003 ; 116 : 293–302. [CrossRef] [PubMed] [Google Scholar]
  8. Albert-Weissenberger C, Sahr T, Sismeiro O, et al. Control of flagellar gene regulation in Legionella pneumophila and its relation to growth phase. J Bacteriol 2010 ; 192 : 446–455. [CrossRef] [PubMed] [Google Scholar]
  9. Sahr T, Brüggemann H, Jules M, et al. Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol Microbiol 2009 ; 72 : 741–762. [CrossRef] [PubMed] [Google Scholar]
  10. Charpentier X, Kay E, Schneider D, et al. Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila. J Bacteriol 2011 ; 193 : 1114–1121. [CrossRef] [PubMed] [Google Scholar]
  11. Harrison TG, Afshar B, Doshi N, et al. Distribution of Legionella pneumophila serogroups, monoclonal antibody subgroups and DNA sequence types in recent clinical and environmental isolates from England and Wales (2000–2008). Eur J Clin Microbiol Infect Dis 2009 ; 28 : 781–791. [CrossRef] [PubMed] [Google Scholar]
  12. Kozak NA, Benson RF, Brown E, et al. Distribution of lag-1 alleles and sequence-based types among Legionella pneumophila serogroup 1 clinical and environmental isolates in the United States. J Clin Microbiol 2009 ; 47 : 2525–2535. [CrossRef] [PubMed] [Google Scholar]
  13. Coscollá M, González-Candelas F. Direct sequencing of Legionella pneumophila from respiratory samples for sequence-based typing analysis. J Clin Microbiol 2009 ; 47 : 2901–2905. [CrossRef] [PubMed] [Google Scholar]
  14. Ginevra C, Lopez M, Forey F, et al. Evaluation of a nested-PCR-derived sequence-based typing method applied directly to respiratory samples from patients with Legionnaires’ disease. J Clin Microbiol 2009 ; 47 : 981–987. [CrossRef] [PubMed] [Google Scholar]
  15. Hilbi H, Jarraud S, Hartland E, et al. Update on Legionnaires’ disease: pathogenesis, epidemiology, detection and control. Mol Microbiol 2010 ; 76 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  16. Campese C, Bitar D, Jarraud S, et al. Progress in the surveillance and control of Legionella infection in France, 1998–2008. Int J Infect Dis 2010 ; 15 : e30–e37. [CrossRef] [PubMed] [Google Scholar]
  17. Tubach F, Ravaud P, Salmon-Céron D, et al. Emergence of Legionella pneumophila pneumonia in patients receiving tumor necrosis factor-alpha antagonists. Clin Infect Dis 2006 ; 43 : e95–100. [CrossRef] [PubMed] [Google Scholar]
  18. Lettinga KD, Weijer S, Speelman P, et al. Reduced interferon-gamma release in patients recovered from Legionnaires’ disease. Thorax 2003 ; 58 : 63–67. [CrossRef] [PubMed] [Google Scholar]
  19. Nogueira CV, Lindsten T, Jamieson AM, et al. Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog 2009 ; 5 : e1000478. [CrossRef] [PubMed] [Google Scholar]
  20. Archer KA, Alexopoulou L, Flavell RA, et al. Multiple MyD88-dependent responses contribute to pulmonary clearance of Legionella pneumophila. Cell Microbiol 2009 ; 11 : 21–36. [CrossRef] [PubMed] [Google Scholar]
  21. Zamboni DS, Kobayashi KS, Kohlsdorf T, et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 2006 ; 7 : 318–325. [CrossRef] [PubMed] [Google Scholar]
  22. Ren T, Zamboni DS, Roy CR, et al. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2006 ; 2 : e18. [CrossRef] [PubMed] [Google Scholar]
  23. Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 2006 ; 24 : 93–103. [CrossRef] [PubMed] [Google Scholar]
  24. Monroe KM, McWhirter SM, Vance RE., Identification of host cytosolic sensors, bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathog 2009 ; 5 : e1000665. [CrossRef] [PubMed] [Google Scholar]
  25. Shim HK, Kim JY, Kim MJ, et al. Legionella lipoprotein activates toll-like receptor 2 and induces cytokine production and expression of costimulatory molecules in peritoneal macrophages. Exp Mol Med 2009 ; 41 : 687–694. [CrossRef] [PubMed] [Google Scholar]
  26. Neumeister B, Faigle M, Spitznagel D, et al. Legionella pneumophila down-regulates MHC class I expression of human monocytic host cells and thereby inhibits T cell activation. Cell Mol Life Sci 2005 ; 62 : 578–588. [CrossRef] [PubMed] [Google Scholar]
  27. Horwitz MA. Cell-mediated immunity in Legionnaires’ disease. J Clin Invest 1983 ; 71 : 1686–1697. [CrossRef] [PubMed] [Google Scholar]
  28. Blander SJ, Breiman RF, Horwitz MA. A live avirulent mutant Legionella pneumophila vaccine induces protective immunity against lethal aerosol challenge. J Clin Invest 1989 ; 83 : 810–815. [CrossRef] [PubMed] [Google Scholar]
  29. Joller N, Spörri R, Hilbi H, et al. Induction and protective role of antibodies in Legionella pneumophila infection. Eur J Immunol 2007 ; 37 : 3414–3423. [CrossRef] [PubMed] [Google Scholar]
  30. Hawn TR, Verbon A, Lettinga KD, et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 2003 ; 198 : 1563–1572. [CrossRef] [PubMed] [Google Scholar]
  31. Fraser DW, Tsai TR, Orenstein W, et al. Legionnaires’ disease: description of an epidemic of pneumonia. N Engl J Med 1977 ; 297 : 1189–1197. [CrossRef] [PubMed] [Google Scholar]
  32. Fiumefreddo R, Zaborsky R, Haeuptle J, et al. Clinical predictors for Legionella in patients presenting with community-acquired pneumonia to the emergency department. BMC Pulm Med 2009 ; 9 : 4. [CrossRef] [PubMed] [Google Scholar]
  33. Fernández-Sabé N, Rosón B, Carratalà J, et al. Clinical diagnosis of Legionella pneumonia revisited: evaluation of the community-based pneumonia incidence study group scoring system. Clin Infect Dis 2003 ; 37 : 483–489. [CrossRef] [PubMed] [Google Scholar]
  34. Johnson JD, Raff MJ, Van Arsdall JA. Neurologic manifestations of Legionnaires’ disease. Medicine (Baltimore) 1984 ; 63 : 303–310. [CrossRef] [PubMed] [Google Scholar]
  35. Cunha BA. The atypical pneumonias: clinical diagnosis and importance. Clin Microbiol Infect 2006 ; 12 : 12–24. [CrossRef] [PubMed] [Google Scholar]
  36. Guleria R, Nisar N, Chawla TC, et al. Mycoplasma pneumoniae and central nervous system complications: a review. J Lab Clin Med 2005 ; 146 : 55–63. [CrossRef] [PubMed] [Google Scholar]
  37. Macfarlane JT, Miller AC, Roderick Smith WH, et al. Comparative radiographic features of community acquired Legionnaires’ disease, pneumococcal pneumonia, mycoplasma pneumonia, and psittacosis. Thorax 1984 ; 39 : 28–33. [CrossRef] [PubMed] [Google Scholar]
  38. Cunha BA. Hypophosphatemia: diagnostic significance in Legionnaires’ disease. Am J Med 2006 ; 119 : e5–e6. [CrossRef] [PubMed] [Google Scholar]
  39. Bellmann-Weiler R, Ausserwinkler M, Kurz K, et al. Clinical potential of C-reactive protein and procalcitonin serum concentrations to guide differential diagnosis and clinical management of pneumococcal and Legionella pneumonia. J Clin Microbiol 2010 ; 48 : 1915–1917. [CrossRef] [PubMed] [Google Scholar]
  40. Yzerman EPF, Boer JW den, Lettinga KD, et al. Sensitivity of three urinary antigen tests associated with clinical severity in a large outbreak of Legionnaires’ disease in The Netherlands. J Clin Microbiol 2002 ; 40 : 3232–3236. [CrossRef] [PubMed] [Google Scholar]
  41. Maurin M, Hammer L, Gestin B, et al. Quantitative real-time PCR tests for diagnostic and prognostic purposes in cases of legionellosis. Clin Microbiol Infect 2010 ; 16 : 379–384. [CrossRef] [PubMed] [Google Scholar]
  42. Diederen BMW, Bruin JP, den Boer JW, et al. Sensitivity of Legionella pneumophila DNA detection in serum samples in relation to disease severity. J Med Microbiol 2007 ; 56 : 1255. [CrossRef] [PubMed] [Google Scholar]
  43. Heath CH, Grove DI, Looke DF. Delay in appropriate therapy of Legionella pneumonia associated with increased mortality. Eur J Clin Microbiol Infect Dis 1996 ; 15 : 286–290. [CrossRef] [PubMed] [Google Scholar]
  44. Da Re S, Ploy MC. Antibiotiques et réponse SOS bactérienne une voie efficace d’acquisition des résistances aux antibiotiques. Med Sci (Paris) 2012 ; 28 : 179–184. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Kowalinski E, Louber J, Gerlier D, Cusack S. RIG-I - Un commutateur moléculaire détecteur d’ARN viral. Med Sci (Paris) 2012 ; 28 : 136–138. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Alexopoulou L, Desnues B, Demaria O. Le récepteur Toll-like 8 : un TLR pas comme les autres. Med Sci (Paris) 2012 ; 28 : 96–102. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.