Free Access
Issue
Med Sci (Paris)
Volume 28, Number 5, Mai 2012
Page(s) 490 - 496
Section Cellules germinales et infertilité mâle
DOI https://doi.org/10.1051/medsci/2012285013
Published online 30 May 2012
  1. Myatt SS, Wang J, Monteiro LJ, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 2010 ; 70 : 367–377. [CrossRef] [PubMed] [Google Scholar]
  2. Pandey AK, Agarwal P, Kaur K, Datta M. MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem 2009 ; 23 : 221–232. [CrossRef] [PubMed] [Google Scholar]
  3. Xu Y, Li F, Zhang B, et al. MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr Res 2010 ; 119 : 219–227. [CrossRef] [PubMed] [Google Scholar]
  4. Serva A, Claas C, Starkuviene V. A potential of microRNAs for high-content screening. J Nucleic Acids 2011 ; 2011 : 870903. [PubMed] [Google Scholar]
  5. Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 2007 ; 104 : 17719–17724. [CrossRef] [Google Scholar]
  6. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs : are the answers in sight ? Nat Rev Genet 2008 ; 9 : 102–114. [Google Scholar]
  7. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010 ; 466 : 835–840. [CrossRef] [PubMed] [Google Scholar]
  8. Meikar O, Da Ros M, Korhonen H, Kotaja N. Chromatoid body and small RNAs in male germ cells. Reproduction 2011 ; 142 : 195–209. [CrossRef] [PubMed] [Google Scholar]
  9. Song R, Hennig GW, Wu Q, et al. Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci USA 2011 ; 108 : 13159–13164. [CrossRef] [Google Scholar]
  10. Ro S, Park C, Sanders KM, et al. Cloning and expression profiling of testis-expressed microRNAs. Dev Biol 2007 ; 311 : 592–602. [CrossRef] [PubMed] [Google Scholar]
  11. Buchold GM, Coarfa C, Kim J, et al. Analysis of microRNA expression in the prepubertal testis. PLoS One 2010 ; 5 : e15317. [CrossRef] [PubMed] [Google Scholar]
  12. Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008 ; 453 : 539–543. [CrossRef] [PubMed] [Google Scholar]
  13. Babiarz JE, Ruby JG, Wang Y, et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008 ; 22 : 2773–2785. [CrossRef] [PubMed] [Google Scholar]
  14. Mandal PK, Kazazian HH Jr. SnapShot: vertebrate transposons. Cell 2008 ; 135 : 192–e1. [CrossRef] [PubMed] [Google Scholar]
  15. Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004 ; 431 : 96–99. [CrossRef] [PubMed] [Google Scholar]
  16. Siomi MC, Kuramochi-Miyagawa S. RNA silencing in germlines: exquisite collaboration of Argonaute proteins with small RNAs for germline survival. Curr Opin Cell Biol 2009 ; 21 : 426–434. [CrossRef] [PubMed] [Google Scholar]
  17. Vagin VV, Sigova A, Li C, et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 2006 ; 313 : 320–324. [CrossRef] [PubMed] [Google Scholar]
  18. Aravin A, Gaidatzis D, Pfeffer S, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006 ; 442 : 203–207. [PubMed] [Google Scholar]
  19. Deng W, Lin H. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2002 ; 2 : 819–830. [CrossRef] [PubMed] [Google Scholar]
  20. Chen C, Ouyang W, Grigura V, et al. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature 2005 ; 436 : 1030–1034. [CrossRef] [PubMed] [Google Scholar]
  21. Niu Z, Goodyear SM, Rao S, et al. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 2011 ; 108 : 12740–12745. [CrossRef] [Google Scholar]
  22. Tong MH, Mitchell DA, McGowan SD, et al. Two miRNAs clusters, Mir-17–92 (Mirc1) and Mir-106b–25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 2011 ; 86 : 72. [CrossRef] [Google Scholar]
  23. Dai L, Tsai-Morris CH, Sato H, et al. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region : implications of its role in germ cell develpoment. J Biol Chem 2011 ; 286 : 44306–44318. [CrossRef] [PubMed] [Google Scholar]
  24. Wu J, Bao J, Wang L, et al. MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC Dev Biol 2011 ; 11 : 64. [CrossRef] [PubMed] [Google Scholar]
  25. Novotny GW, Sonne SB, Nielsen JE, et al. Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17–92 cluster. Cell Death Differ 2007 ; 14 : 879–882. [CrossRef] [PubMed] [Google Scholar]
  26. Voorhoeve PM, le Sage C, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006 ; 124 : 1169–1181. [CrossRef] [PubMed] [Google Scholar]
  27. Song R, Ro S, Michaels JD, et al. Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 2009 ; 41 : 488–493. [CrossRef] [PubMed] [Google Scholar]
  28. McIver SC, Roman SD, Nixon B, McLaughlin EA. miRNA and mammalian male germ cells. Hum Reprod Update 2012 ; 18 : 44–59. [CrossRef] [PubMed] [Google Scholar]
  29. Papaioannou MD, Lagarrigue M, Vejnar CE, et al. Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics 2011 ; 10 : M900587MCP200. [PubMed] [Google Scholar]
  30. Papaioannou MD, Pitetti JL, Ro S, et al. Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 2009 ; 326 : 250–259. [CrossRef] [PubMed] [Google Scholar]
  31. Korhonen HM, Meikar O, Yadav RP, et al. Dicer is required for haploid male germ cell differentiation in mice. PLoS One 2011 ; 6 : e24821. [CrossRef] [PubMed] [Google Scholar]
  32. Romero Y, Meikar O, Papaioannou MD, et al. Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One 2011 ; 6 : e25241. [CrossRef] [PubMed] [Google Scholar]
  33. Han J, Lee Y, Yeom KH, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006 ; 125 : 887–901. [CrossRef] [PubMed] [Google Scholar]
  34. Kok KH, Ng MH, Ching YP, Jin DY. Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem 2007 ; 282 : 17649–17657. [CrossRef] [PubMed] [Google Scholar]
  35. Dunoyer P. La bataille du silence : mécanisme et inhibition du RNA silencing au cours des interactions plante/virus. Med Sci (Paris) 2009 ; 25 : 505–511. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.