Free Access
Issue
Med Sci (Paris)
Volume 28, Number 5, Mai 2012
Page(s) 485 - 489
Section Cellules germinales et infertilité mâle
DOI https://doi.org/10.1051/medsci/2012285012
Published online 30 May 2012
  1. Rousseaux S, Reynoird N, Escoffier E, et al. Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online 2008 ; 16 : 492–503. [CrossRef] [PubMed] [Google Scholar]
  2. Gaucher J, Reynoird N, Montellier E, et al. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J 2010 ; 277 : 599–604. [CrossRef] [PubMed] [Google Scholar]
  3. Govin J, Caron C, Lestrat C, et al. The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem 2004 ; 271 : 3459–3469. [CrossRef] [PubMed] [Google Scholar]
  4. Van der Heijden GW, Derijck AA, Pósfai E, et al. Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 2007 ; 39 : 251–258. [CrossRef] [PubMed] [Google Scholar]
  5. Greaves IK, Rangasamy D, Devoy M, et al. The X and Y chromosomes assemble into H2A.Z-containing facultative heterochromatin following meiosis. Mol Cell Biol 2006 ; 26 : 5394–5405. [CrossRef] [PubMed] [Google Scholar]
  6. Jin C, Felsenfeld G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 2007 ; 21 : 1519–1529. [CrossRef] [PubMed] [Google Scholar]
  7. Govin J, Escoffier E, Rousseaux S, et al. Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 2007 ; 176 : 283–294. [CrossRef] [PubMed] [Google Scholar]
  8. Li A, Maffey AH, Abbott WD, et al. Characterization of nucleosomes consisting of the human testis/sperm-specific histone H2B variant (hTSH2B). Biochemistry 2005 ; 44 : 2529–2535. [CrossRef] [PubMed] [Google Scholar]
  9. Wu F, Caron C, De Robertis C, et al. Testis-specific histone variants H2AL1/2 rapidly disappear from paternal heterochromatin after fertilization. J Reprod Dev 2008 ; 54 : 413–417. [CrossRef] [PubMed] [Google Scholar]
  10. González-Romero R, Méndez J, Ausió J, et al. Quickly evolving histones, nucleosome stability and chromatin folding: all about histone H2A.Bbd. Gene 2008 ; 413 : 1–7. [CrossRef] [PubMed] [Google Scholar]
  11. Tachiwana H, Kagawa W, Osakabe A, et al. Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc Natl Acad Sci USA 2010 ; 107 : 10454–10459. [CrossRef] [Google Scholar]
  12. Wiedemann SM, Mildner SN, Bönisch C, et al. Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. J Cell Biol 2010 ; 190 : 777–791. [CrossRef] [PubMed] [Google Scholar]
  13. Schenk R, Jenke A, Zilbauer M, et al. H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. Chromosoma 2011 ; 120 : 275–285. [CrossRef] [PubMed] [Google Scholar]
  14. Boulard M, Gautier T, Mbele GO, et al. The NH2 tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol Cell Biol 2006 ; 26 : 1518–1526. [CrossRef] [PubMed] [Google Scholar]
  15. Godde JS, Ura K. Dynamic alterations of linker histone variants during development. Int J Dev Biol 2009 ; 53 : 215–224. [CrossRef] [PubMed] [Google Scholar]
  16. Marushige K, Marushige Y, Wong TK. Complete displacement of somatic histones during transformation of spermatid chromatin: a model experiment. Biochemistry 1976 ; 15 : 2047–2053. [CrossRef] [PubMed] [Google Scholar]
  17. Oliva R, Mezquita C. Marked differences in the ability of distinct protamines to disassemble nucleosomal core particles in vitro. Biochemistry 1986 ; 25 : 6508–6511. [CrossRef] [PubMed] [Google Scholar]
  18. Oliva R, Bazett-Jones D, Mezquita C, et al. Factors affecting nucleosome disassembly by protamines in vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem 1987 ; 262 : 17016–17025. [PubMed] [Google Scholar]
  19. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 2007 ; 76 : 75–100. [CrossRef] [PubMed] [Google Scholar]
  20. Miotto B, Struhl K. De la régulation du génome à la progression tumorale : acétylation de la lysine 16 de l’histone H4. Med Sci (Paris) 2007 ; 23 : 735–740. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  21. Costelloe T, Lowndes NF. Chromatin assembly and signalling the end of DNA repair requires acetylation of histone H3 on lysine 56. Subcell Biochem 2010 ; 50 : 43–54. [CrossRef] [PubMed] [Google Scholar]
  22. Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 2011 ; 146 : 1016–1028. [CrossRef] [PubMed] [Google Scholar]
  23. Baarends WM, Hoogerbrugge JW, Roest HP, et al. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol 1999 ; 207 : 322–333. [CrossRef] [PubMed] [Google Scholar]
  24. Meyer-Ficca ML, Scherthan H, Bürkle A, Meyer RG. Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma 2005 ; 114 : 67–74. [CrossRef] [PubMed] [Google Scholar]
  25. Meyer-Ficca ML, Ihara M, Lonchar JD, et al. Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biol Reprod 2011 ; 84 : 218–228. [CrossRef] [PubMed] [Google Scholar]
  26. Leduc F, Maquennehan V, Nkoma GB, et al. DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod 2008 ; 78 : 324–332. [CrossRef] [PubMed] [Google Scholar]
  27. Mujtaba S, Zeng L, Zhou MM. Structure and acetyl-lysine recognition of the bromodomain. Oncogene 2007 ; 26 : 5521–5527. [CrossRef] [PubMed] [Google Scholar]
  28. Rousseaux S, Petosa C, Müller CW, et al. Du nouveau dans la compréhension de la reprogrammation postméiotique du génome mâle. Med Sci (Paris) 2010 ; 26 : 130–132. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  29. Morinière J, Rousseaux S, Steuerwald U, et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 2009 ; 461 : 664–668. [CrossRef] [PubMed] [Google Scholar]
  30. Shang E, Nickerson HD, Wen D, et al. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development 2007 ; 134 : 3507–3515. [CrossRef] [PubMed] [Google Scholar]
  31. Zhao M, Shirley CR, Hayashi S, et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis 2004 ; 38 : 200–213. [CrossRef] [PubMed] [Google Scholar]
  32. Govin J, Dorsey J, Gaucher J, et al. Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis. Genes Dev 2010 ; 24 : 1772–1786. [CrossRef] [PubMed] [Google Scholar]
  33. Pivot-Pajot C, Caron C, Govin J, et al. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol 2003 ; 23 : 5354–5365. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.