Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 5, Mai 2012
Page(s) 490 - 496
Section Cellules germinales et infertilité mâle
DOI https://doi.org/10.1051/medsci/2012285013
Publié en ligne 30 mai 2012
  1. Myatt SS, Wang J, Monteiro LJ, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 2010 ; 70 : 367–377. [CrossRef] [PubMed]
  2. Pandey AK, Agarwal P, Kaur K, Datta M. MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem 2009 ; 23 : 221–232. [CrossRef] [PubMed]
  3. Xu Y, Li F, Zhang B, et al. MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr Res 2010 ; 119 : 219–227. [CrossRef] [PubMed]
  4. Serva A, Claas C, Starkuviene V. A potential of microRNAs for high-content screening. J Nucleic Acids 2011 ; 2011 : 870903. [PubMed]
  5. Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 2007 ; 104 : 17719–17724. [CrossRef]
  6. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs : are the answers in sight ? Nat Rev Genet 2008 ; 9 : 102–114. [CrossRef] [PubMed]
  7. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010 ; 466 : 835–840. [CrossRef] [PubMed]
  8. Meikar O, Da Ros M, Korhonen H, Kotaja N. Chromatoid body and small RNAs in male germ cells. Reproduction 2011 ; 142 : 195–209. [CrossRef] [PubMed]
  9. Song R, Hennig GW, Wu Q, et al. Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci USA 2011 ; 108 : 13159–13164. [CrossRef]
  10. Ro S, Park C, Sanders KM, et al. Cloning and expression profiling of testis-expressed microRNAs. Dev Biol 2007 ; 311 : 592–602. [CrossRef] [PubMed]
  11. Buchold GM, Coarfa C, Kim J, et al. Analysis of microRNA expression in the prepubertal testis. PLoS One 2010 ; 5 : e15317. [CrossRef] [PubMed]
  12. Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008 ; 453 : 539–543. [CrossRef] [PubMed]
  13. Babiarz JE, Ruby JG, Wang Y, et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008 ; 22 : 2773–2785. [CrossRef] [PubMed]
  14. Mandal PK, Kazazian HH Jr. SnapShot: vertebrate transposons. Cell 2008 ; 135 : 192–e1. [CrossRef] [PubMed]
  15. Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004 ; 431 : 96–99. [CrossRef] [PubMed]
  16. Siomi MC, Kuramochi-Miyagawa S. RNA silencing in germlines: exquisite collaboration of Argonaute proteins with small RNAs for germline survival. Curr Opin Cell Biol 2009 ; 21 : 426–434. [CrossRef] [PubMed]
  17. Vagin VV, Sigova A, Li C, et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 2006 ; 313 : 320–324. [CrossRef] [PubMed]
  18. Aravin A, Gaidatzis D, Pfeffer S, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006 ; 442 : 203–207. [PubMed]
  19. Deng W, Lin H. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2002 ; 2 : 819–830. [CrossRef] [PubMed]
  20. Chen C, Ouyang W, Grigura V, et al. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature 2005 ; 436 : 1030–1034. [CrossRef] [PubMed]
  21. Niu Z, Goodyear SM, Rao S, et al. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 2011 ; 108 : 12740–12745. [CrossRef]
  22. Tong MH, Mitchell DA, McGowan SD, et al. Two miRNAs clusters, Mir-17–92 (Mirc1) and Mir-106b–25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 2011 ; 86 : 72. [CrossRef]
  23. Dai L, Tsai-Morris CH, Sato H, et al. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region : implications of its role in germ cell develpoment. J Biol Chem 2011 ; 286 : 44306–44318. [CrossRef] [PubMed]
  24. Wu J, Bao J, Wang L, et al. MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC Dev Biol 2011 ; 11 : 64. [CrossRef] [PubMed]
  25. Novotny GW, Sonne SB, Nielsen JE, et al. Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17–92 cluster. Cell Death Differ 2007 ; 14 : 879–882. [CrossRef] [PubMed]
  26. Voorhoeve PM, le Sage C, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006 ; 124 : 1169–1181. [CrossRef] [PubMed]
  27. Song R, Ro S, Michaels JD, et al. Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 2009 ; 41 : 488–493. [CrossRef] [PubMed]
  28. McIver SC, Roman SD, Nixon B, McLaughlin EA. miRNA and mammalian male germ cells. Hum Reprod Update 2012 ; 18 : 44–59. [CrossRef] [PubMed]
  29. Papaioannou MD, Lagarrigue M, Vejnar CE, et al. Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics 2011 ; 10 : M900587MCP200. [PubMed]
  30. Papaioannou MD, Pitetti JL, Ro S, et al. Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 2009 ; 326 : 250–259. [CrossRef] [PubMed]
  31. Korhonen HM, Meikar O, Yadav RP, et al. Dicer is required for haploid male germ cell differentiation in mice. PLoS One 2011 ; 6 : e24821. [CrossRef] [PubMed]
  32. Romero Y, Meikar O, Papaioannou MD, et al. Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One 2011 ; 6 : e25241. [CrossRef] [PubMed]
  33. Han J, Lee Y, Yeom KH, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006 ; 125 : 887–901. [CrossRef] [PubMed]
  34. Kok KH, Ng MH, Ching YP, Jin DY. Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem 2007 ; 282 : 17649–17657. [CrossRef] [PubMed]
  35. Dunoyer P. La bataille du silence : mécanisme et inhibition du RNA silencing au cours des interactions plante/virus. Med Sci (Paris) 2009 ; 25 : 505–511. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.