Free Access
Issue
Med Sci (Paris)
Volume 28, Mars 2012
Génomique et recherche clinique en oncologie : approches de sciences humaines, économiques et sociales (SHES)
Page(s) 7 - 13
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012281s104
Published online 09 April 2012
  1. Jones D, Cambrosio A, Mogoutov A. Detection characterization of translational research in cancer, cardiovascular medicine . J Transl Med 2011 ; 9 : 57. [CrossRef] [PubMed] [Google Scholar]
  2. Chomczynski P, Sacchi N. 1987 Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987 ; 162 : 156–159. [CrossRef] [PubMed] [Google Scholar]
  3. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning : a laboratory manual. Cold Spring Harbor NY : Cold Spring Harbor Laboratory Press, 1989. [Google Scholar]
  4. Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol 1990 ; 215 : 403–410. [CrossRef] [PubMed] [Google Scholar]
  5. Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992 ; 257 : 967–971. [CrossRef] [PubMed] [Google Scholar]
  6. Van Gelder RN, von Zastrow ME, Yool A, et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA 1990 ; 87 : 1663–1667. [CrossRef] [Google Scholar]
  7. Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science 1996 ; 274 : 998–1001. [CrossRef] [PubMed] [Google Scholar]
  8. Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995 ; 270 : 467–470. [CrossRef] [PubMed] [Google Scholar]
  9. DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996 ; 14 : 457–460. [CrossRef] [PubMed] [Google Scholar]
  10. Lockhart DJ, Dong H, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996 ; 14 : 1675–1680. [CrossRef] [PubMed] [Google Scholar]
  11. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998 ; 95 : 14863–14868. [CrossRef] [Google Scholar]
  12. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 1995 ; 57 : 289–300. [Google Scholar]
  13. Ihaka R, Gentleman RR. A language for data analysis and graphics. J Comput Graph Stat 1996 ; 5 : 299–314. [CrossRef] [Google Scholar]
  14. Keating P, Cambrosio A. Too many numbers: microarrays in clinical cancer research. Stud Hist Philos Biol Biomed Sci 2012 ; 43 : 37–51. [CrossRef] [PubMed] [Google Scholar]
  15. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001 ; 98 : 5116–5121. [CrossRef] [Google Scholar]
  16. Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001 ; 29 : 365–371. [CrossRef] [PubMed] [Google Scholar]
  17. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 2000 ; 25 : 25–29. [CrossRef] [PubMed] [Google Scholar]
  18. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999 ; 286 : 531–537. [CrossRef] [PubMed] [Google Scholar]
  19. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000 ; 403 : 503–511. [CrossRef] [PubMed] [Google Scholar]
  20. Perou CM, Jeffrey SS, van de Rijn M, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 1999 ; 96 : 9212–9217. [CrossRef] [Google Scholar]
  21. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000 ; 406 : 747–752. [CrossRef] [PubMed] [Google Scholar]
  22. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001 ; 98 : 10869–10874. [CrossRef] [Google Scholar]
  23. van ‘t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002 ; 415 : 530–536. [CrossRef] [PubMed] [Google Scholar]
  24. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004 ; 351 : 2817–2826. [CrossRef] [PubMed] [Google Scholar]
  25. Kohli-Laven N, Bourret P, Keating P, Cambrosio A. Cancer clinical trials in the era of genomic signatures: biomedical innovation, clinical utility, and regulatory-scientific hybrids. Soc Stud Sci 2011 ; 41 : 487–513. [CrossRef] [PubMed] [Google Scholar]
  26. Simon R, Radmacher MD, Dobbin K, McShane LM. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 2003 ; 95 : 14–18. [CrossRef] [PubMed] [Google Scholar]
  27. Keating P, Cambrosio A. Cancer on trial: oncology as a new style of practice. Chicago : University of Chicago Press, 2012 : 424 p. [Google Scholar]
  28. Rogers S, Cambrosio A. Making a new technology work: the standardization and regulation of microarrays. Yale J Biol Med 2007 ; 80 : 165–178. [PubMed] [Google Scholar]
  29. Borreson Dale AL. Bench, bedside, bytes and back: a virtuous cycle of knowledge. 2011. http://www.ecancermedicalscience.com/tv/video-by-category.asp?play=891&cid=2&scid=101&q= [Google Scholar]
  30. Irizzary RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003 ; 4 : 249–264. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.