Free Access
Med Sci (Paris)
Volume 28, Mars 2012
Génomique et recherche clinique en oncologie : approches de sciences humaines, économiques et sociales (SHES)
Page(s) 14 - 18
Section M/S Revues
Published online 09 April 2012
  1. Bertucci F, Houlgatte R, Nguyen C, et al. Gene expression profiling of cancer by use of DNA arrays: how far from the clinic? Lancet Oncol 2001 ; 2 : 674–682. [CrossRef] [PubMed] [Google Scholar]
  2. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000 ; 406 : 747–752. [CrossRef] [PubMed] [Google Scholar]
  3. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001 ; 98 : 10869–10874. [CrossRef] [Google Scholar]
  4. Yu K, Lee CH, Tan PH, Tan P. Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations. Clin Cancer Res 2004 ; 10 : 5508–5517. [CrossRef] [PubMed] [Google Scholar]
  5. Weigelt B, Hu Z, He X, et al. Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 2005 ; 65 : 9155–9158. [CrossRef] [PubMed] [Google Scholar]
  6. Bertucci F, Finetti P, Rougemont J, et al. Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res 2005 ; 65 : 2170–2178. [CrossRef] [PubMed] [Google Scholar]
  7. Prat A, Parker JS, Karginova O, et al. Phenotypic, molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010 ; 12 : R68. [CrossRef] [PubMed] [Google Scholar]
  8. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med 2009 ; 360 : 790–800. [CrossRef] [PubMed] [Google Scholar]
  9. Bertucci F, Finetti P, Cervera N, Birnbaum D. Classification pronostique du cancer du sein et profils d’expression génique sur puces à ADN. Med Sci (Paris) 2008 ; 24 : 599–606. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. van ’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002 ; 415 : 530–536. [CrossRef] [PubMed] [Google Scholar]
  11. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002 ; 347 : 1999–2009. [CrossRef] [PubMed] [Google Scholar]
  12. Buyse M, Loi S, van’t Veer L, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 2006 ; 98 : 1183–1192. [CrossRef] [PubMed] [Google Scholar]
  13. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004 ; 351 : 2817–2826. [CrossRef] [PubMed] [Google Scholar]
  14. Ma XJ, Wang Z, Ryan PD, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004 ; 5 : 607–616. [CrossRef] [PubMed] [Google Scholar]
  15. Sotiriou C, Wirapati P, Loi S, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 2006 ; 98 : 262–272. [CrossRef] [PubMed] [Google Scholar]
  16. Hess KR, Anderson K, Symmans WF, et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 2006 ; 24 : 4236–4244. [CrossRef] [PubMed] [Google Scholar]
  17. Desmedt C, Di Leo A, de Azambuja E, et al. Multifactorial approach to predicting resistance to anthracyclines. J Clin Oncol 2011 ; 29 : 1578–1586. [CrossRef] [PubMed] [Google Scholar]
  18. Bertucci F, Borie N, Roche H, et al. Gene expression profile predicts outcome after anthracycline-based adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 2011 ; 127 : 363–373. [CrossRef] [PubMed] [Google Scholar]
  19. Gravier E, Pierron G, Vincent-Salomon A, et al. A prognostic DNA signature for T1T2 node-negative breast cancer patients. Genes Chromosomes Cancer 2010 ; 49 : 1125–1134. [Google Scholar]
  20. Zhang Y, Martens JW, Yu JX, et al. Copy number alterations that predict metastatic capability of human breast cancer. Cancer Res 2009 ; 69 : 3795–3801. [CrossRef] [PubMed] [Google Scholar]
  21. Sircoulomb F, Nicolas N, Ferrari A, et al. ZNF703 gene amplification at 8p12 specifies luminal B breast cancer. EMBO Mol Med 2011 ; 3 : 153–166. [CrossRef] [PubMed] [Google Scholar]
  22. Mills RE, Walter K, Stewart C, et al. Mapping copy number variation by population-scale genome sequencing. Nature 2011 ; 470 : 59–65. [CrossRef] [PubMed] [Google Scholar]
  23. Thomas G, Jacobs KB, Kraft P, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 2009 ; 41 : 579–584. [CrossRef] [PubMed] [Google Scholar]
  24. Ingle JN, Schaid DJ, Goss PE, et al. Genome-wide associations and functional genomic studies of musculoskeletal adverse events in women receiving aromatase inhibitors. J Clin Oncol 2010 ; 28 : 4674–4682. [CrossRef] [PubMed] [Google Scholar]
  25. Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006 ; 66 : 3992–3995. [CrossRef] [PubMed] [Google Scholar]
  26. Cardoso F, Van’t Veer L, Rutgers E, et al. Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008 ; 26 : 729–735. [CrossRef] [PubMed] [Google Scholar]
  27. Sparano JA, Paik S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 2008 ; 26 : 721–728. [CrossRef] [PubMed] [Google Scholar]
  28. Tabchy A, Valero V, Vidaurre T, et al. Evaluation of a 30-gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemotherapy response predictor in a multicenter randomized trial in breast cancer. Clin Cancer Res 2010 ; 16 : 5351–5361. [CrossRef] [PubMed] [Google Scholar]
  29. Bertucci F, Ferrero JM, Bachelot T, et al. SA02 trial: a genomics-based prospective study of adjuvant chemotherapy in node-positive early breast cancer with good-prognosis signature. San Antonio, TX: Breast Cancer Symposium, 2009. [Google Scholar]
  30. Bild AH, Parker JS, Gustafson AM, et al. An integration of complementary strategies for gene-expression analysis to reveal novel therapeutic opportunities for breast cancer. Breast Cancer Res 2009 ; 11 : R55. [CrossRef] [PubMed] [Google Scholar]
  31. Von Hoff DD, Stephenson JJ, Jr, Rosen P, et al. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 2010 ; 28 : 4877–4883. [CrossRef] [PubMed] [Google Scholar]
  32. Andre F, Delaloge S, Soria JC. Biology-driven phase II trials: what is the optimal model for molecular selection? J Clin Oncol 2011 ; 29 : 1236–1238. [CrossRef] [PubMed] [Google Scholar]
  33. Tursz T, Andre F, Lazar V, LaCroix L, Soria JC. Implications of personalized medicine-perspective from a cancer center. Nat Rev Clin Oncol 2011 ; 8 : 177–183. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.