Free Access
Issue
Med Sci (Paris)
Volume 27, Number 11, Novembre 2011
Page(s) 966 - 972
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20112711012
Published online 30 November 2011
  1. Bonay M, Aubier M. Pollution atmosphérique et maladies respiratoires allergiques. Med Sci (Paris) 2007 ; 23 : 187–192. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Yamamoto T, Sakaguchi N, Hachiya M, et al. Role of catalase in monocytic differentiation of U937 cells by TPA: hydrogen peroxide as a second messenger. Leukemia 2009 ; 23 : 761–769. [CrossRef] [PubMed] [Google Scholar]
  3. Rangasamy T, Williams MA, Bauer S, et al. Nuclear erythroid 2 p45-related factor 2 inhibits the maturation of murine dendritic cells by ragweed extract. Am J Respir Cell Mol Biol 2010 ; 43 : 276–285. [CrossRef] [PubMed] [Google Scholar]
  4. Walters DM, Cho HY, Kleeberger SR. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxid Redox Signal 2008 ; 10 : 321–332. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  5. Boutten A, Goven D, Boczkowski J, Bonay M. Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets 2010 ; 14 : 329–346. [CrossRef] [PubMed] [Google Scholar]
  6. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007 ; 39 : 44–84. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  7. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007 ; 39 : 44–84. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  8. Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited. Pharmacol Ther 2010 ; 128 : 336–374. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  9. Sykiotis GP, Bohmann D. Stress-activated cap’n’collar transcription factors in aging and human disease. Sci Signal 2010 ; 3 : re3. [CrossRef] [PubMed] [Google Scholar]
  10. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 2007 ; 47 : 89–116. [CrossRef] [PubMed] [Google Scholar]
  11. Gong X, Kole L, Iskander K, Jaiswal AK. NRH: quinone oxidoreductase 2 and NAD(P)H: quinone oxidoreductase 1 protect tumor suppressor p53 against 20s proteasomal degradation leading to stabilization and activation of p53. Cancer Res 2007 ; 67 : 5380–5388. [CrossRef] [PubMed] [Google Scholar]
  12. Morse D, Choi AM. Heme oxygenase-1: from bench to bedside. Am J Respir Crit Care Med 2005 ; 172 : 660–670. [CrossRef] [PubMed] [Google Scholar]
  13. Malhotra D, Portales-Casamar E, Singh A, et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res 2010 ; 38 : 5718–5734. [CrossRef] [PubMed] [Google Scholar]
  14. Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 2007 ; 87 : 1047–1082. [CrossRef] [PubMed] [Google Scholar]
  15. Shaykhiev R, Krause A, Salit J, et al. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol 2009 ; 183 : 2867–2883. [CrossRef] [PubMed] [Google Scholar]
  16. Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 2009 ; 4 : 435–459. [CrossRef] [PubMed] [Google Scholar]
  17. Goven D, Boutten A, Lecon-Malas V, et al. Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax 2008 ; 63 : 916–924. [CrossRef] [PubMed] [Google Scholar]
  18. Goven D, Boutten A, Lecon-Malas V, et al. Prolonged cigarette smoke exposure decreases heme oxygenase-1 and alters Nrf2 and Bach1 expression in human macrophages: roles of the MAP kinases ERK(1/2) and JNK. FEBS Lett 2009 ; 583 : 3508–3518. [CrossRef] [PubMed] [Google Scholar]
  19. Malhotra D, Thimmulappa R, Navas-Acien A, et al. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 2008 ; 178 : 592–604. [CrossRef] [PubMed] [Google Scholar]
  20. Malhotra D, Thimmulappa R, Vij N, et al. Heightened endoplasmic reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: the role of Nrf2-regulated proteasomal activity. Am J Respir Crit Care Med 2009 ; 180 : 1196–1207. [CrossRef] [PubMed] [Google Scholar]
  21. Siedlinski M, Postma DS, Boer JM, et al. Level, course of FEV1 in relation to polymorphisms in NFE2L2 and KEAP1 in the general population. Respir Res 2009 ; 10 : 73. [CrossRef] [PubMed] [Google Scholar]
  22. Strieter RM, Mehrad B. New mechanisms of pulmonary fibrosis. Chest 2009 ; 136 : 1364–1370. [CrossRef] [PubMed] [Google Scholar]
  23. Hecker L, Vittal R, Jones T, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 2009 ; 15 : 1077–1081. [CrossRef] [PubMed] [Google Scholar]
  24. Braun S, Hanselmann C, Gassmann MG, et al. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol Cell Biol 2002 ; 22 : 5492–5505. [CrossRef] [PubMed] [Google Scholar]
  25. Bakin AV, Stourman NV, Sekhar KR, et al. Smad3-ATF3 signaling mediates TGF-beta suppression of genes encoding Phase II detoxifying proteins. Free Radic Biol Med 2005 ; 38 : 375–387. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  26. Mazur W, Lindholm P, Vuorinen K, et al. Cell-specific elevation of NRF2 and sulfiredoxin-1 as markers of oxidative stress in the lungs of idiopathic pulmonary fibrosis and non-specific interstitial pneumonia. Apmis 2010 ; 118 : 703–712. [CrossRef] [PubMed] [Google Scholar]
  27. Artaud-Macari E, Goven D, Brayer S, et al. Modulation of fibroblast phenotype in idiopathic pulmonary fibrosis: role of Nrf2. Am J Respir Crit Care Med 2011 ; 183 : A5989. [Google Scholar]
  28. Marzec JM, Christie JD, Reddy SP, et al. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. Faseb J 2007 ; 21 : 2237–2246. [CrossRef] [PubMed] [Google Scholar]
  29. Kim SH, Choi GS, Ye YM, et al. Toluene diisocyanate (TDI) regulates haem oxygenase-1/ferritin expression: implications for toluene diisocyanate-induced asthma. Clin Exp Immunol 2010 ; 160 : 489–497. [CrossRef] [PubMed] [Google Scholar]
  30. Nichols DP, Ziady AG, Shank SL, et al. The triterpenoid CDDO limits inflammation in preclinical models of cystic fibrosis lung disease. Am J Physiol Lung Cell Mol Physiol 2009 ; 297 : L828–L836. [CrossRef] [PubMed] [Google Scholar]
  31. Rene C, Lopez E, Claustres M, et al. NF-E2-related factor 2, a key inducer of antioxidant defenses, negatively regulates the CFTR transcription. Cell Mol Life Sci 2010 ; 67 : 2297–2309. [CrossRef] [PubMed] [Google Scholar]
  32. Ohta T, Iijima K, Miyamoto M, et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 2008 ; 68 : 1303–1309. [CrossRef] [PubMed] [Google Scholar]
  33. Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 2006 ; 8 : 76–87. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  34. Boutten A, Goven D, Artaud-Macari E, et al. NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease. Trends Mol Med 2011 ; 17 : 363–371. [CrossRef] [PubMed] [Google Scholar]
  35. Spira A, Beane JE, Shah V, et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med 2007 ; 13 : 361–366. [CrossRef] [PubMed] [Google Scholar]
  36. Aoki Y, Hashimoto AH, Amanuma K, et al. Enhanced spontaneous and benzo(a)pyrene-induced mutations in the lung of Nrf2-deficient gpt delta mice. Cancer Res 2007 ; 67 : 5643–5648. [CrossRef] [PubMed] [Google Scholar]
  37. Martin-Montalvo A, Villalba JM, Navas P, de Cabo R. NRF2, cancer and calorie restriction. Oncogene 2010 ; 30 : 505–520. [CrossRef] [PubMed] [Google Scholar]
  38. Shibata T, Ohta T, Tong KI, et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci USA 2008 ; 105 : 13568–13573. [CrossRef] [Google Scholar]
  39. Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 2009 ; 34 : 176–188. [CrossRef] [PubMed] [Google Scholar]
  40. Niso-Santano M, Gonzalez-Polo RA, Bravo-San Pedro JM, et al. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis. Free Radic Biol Med 2010 ; 48 : 1370–1381. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  41. Shah ZA, Li RC, Ahmad AS, et al. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J Cereb Blood Flow Metab 2010 ; 30 : 1951–1961. [CrossRef] [PubMed] [Google Scholar]
  42. Mann GE, Bonacasa B, Ishii T, Siow RC. Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones. Curr Opin Pharmacol 2009 ; 9 : 139–145. [CrossRef] [PubMed] [Google Scholar]
  43. Yoon HY, Kang NI, Lee HK, et al. Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem Pharmacol 2008 ; 75 : 2214–2223. [CrossRef] [PubMed] [Google Scholar]
  44. Hsu CL, Wu YL, Tang GJ, et al. Ginkgo biloba extract confers protection from cigarette smoke extract-induced apoptosis in human lung endothelial cells: role of heme oxygenase-1. Pulm Pharmacol Ther 2009 ; 22 : 286–296. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  45. Yang L, Calingasan NY, Thomas B, et al. Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription. PLoS One 2009 ; 4 : e5757. [CrossRef] [PubMed] [Google Scholar]
  46. Ichikawa T, Li J, Meyer CJ, et al. Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes. PLoS One 2009 ; 4 : e8391. [CrossRef] [PubMed] [Google Scholar]
  47. Sussan TE, Rangasamy T, Blake DJ, et al. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci USA 2009 ; 106 : 250–255. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.