Accès gratuit
Med Sci (Paris)
Volume 27, Numéro 11, Novembre 2011
Page(s) 966 - 972
Section M/S Revues
Publié en ligne 30 novembre 2011
  1. Bonay M, Aubier M. Pollution atmosphérique et maladies respiratoires allergiques. Med Sci (Paris) 2007 ; 23 : 187–192. [CrossRef] [EDP Sciences] [PubMed]
  2. Yamamoto T, Sakaguchi N, Hachiya M, et al. Role of catalase in monocytic differentiation of U937 cells by TPA: hydrogen peroxide as a second messenger. Leukemia 2009 ; 23 : 761–769. [CrossRef] [PubMed]
  3. Rangasamy T, Williams MA, Bauer S, et al. Nuclear erythroid 2 p45-related factor 2 inhibits the maturation of murine dendritic cells by ragweed extract. Am J Respir Cell Mol Biol 2010 ; 43 : 276–285. [CrossRef] [PubMed]
  4. Walters DM, Cho HY, Kleeberger SR. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxid Redox Signal 2008 ; 10 : 321–332. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  5. Boutten A, Goven D, Boczkowski J, Bonay M. Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets 2010 ; 14 : 329–346. [CrossRef] [PubMed]
  6. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007 ; 39 : 44–84. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  7. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007 ; 39 : 44–84. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  8. Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited. Pharmacol Ther 2010 ; 128 : 336–374. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  9. Sykiotis GP, Bohmann D. Stress-activated cap’n’collar transcription factors in aging and human disease. Sci Signal 2010 ; 3 : re3. [CrossRef] [PubMed]
  10. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 2007 ; 47 : 89–116. [CrossRef] [PubMed]
  11. Gong X, Kole L, Iskander K, Jaiswal AK. NRH: quinone oxidoreductase 2 and NAD(P)H: quinone oxidoreductase 1 protect tumor suppressor p53 against 20s proteasomal degradation leading to stabilization and activation of p53. Cancer Res 2007 ; 67 : 5380–5388. [CrossRef] [PubMed]
  12. Morse D, Choi AM. Heme oxygenase-1: from bench to bedside. Am J Respir Crit Care Med 2005 ; 172 : 660–670. [CrossRef] [PubMed]
  13. Malhotra D, Portales-Casamar E, Singh A, et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res 2010 ; 38 : 5718–5734. [CrossRef] [PubMed]
  14. Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 2007 ; 87 : 1047–1082. [CrossRef] [PubMed]
  15. Shaykhiev R, Krause A, Salit J, et al. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol 2009 ; 183 : 2867–2883. [CrossRef] [PubMed]
  16. Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 2009 ; 4 : 435–459. [CrossRef] [PubMed]
  17. Goven D, Boutten A, Lecon-Malas V, et al. Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax 2008 ; 63 : 916–924. [CrossRef] [PubMed]
  18. Goven D, Boutten A, Lecon-Malas V, et al. Prolonged cigarette smoke exposure decreases heme oxygenase-1 and alters Nrf2 and Bach1 expression in human macrophages: roles of the MAP kinases ERK(1/2) and JNK. FEBS Lett 2009 ; 583 : 3508–3518. [CrossRef] [PubMed]
  19. Malhotra D, Thimmulappa R, Navas-Acien A, et al. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 2008 ; 178 : 592–604. [CrossRef] [PubMed]
  20. Malhotra D, Thimmulappa R, Vij N, et al. Heightened endoplasmic reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: the role of Nrf2-regulated proteasomal activity. Am J Respir Crit Care Med 2009 ; 180 : 1196–1207. [CrossRef] [PubMed]
  21. Siedlinski M, Postma DS, Boer JM, et al. Level, course of FEV1 in relation to polymorphisms in NFE2L2 and KEAP1 in the general population. Respir Res 2009 ; 10 : 73. [CrossRef] [PubMed]
  22. Strieter RM, Mehrad B. New mechanisms of pulmonary fibrosis. Chest 2009 ; 136 : 1364–1370. [CrossRef] [PubMed]
  23. Hecker L, Vittal R, Jones T, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 2009 ; 15 : 1077–1081. [CrossRef] [PubMed]
  24. Braun S, Hanselmann C, Gassmann MG, et al. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol Cell Biol 2002 ; 22 : 5492–5505. [CrossRef] [PubMed]
  25. Bakin AV, Stourman NV, Sekhar KR, et al. Smad3-ATF3 signaling mediates TGF-beta suppression of genes encoding Phase II detoxifying proteins. Free Radic Biol Med 2005 ; 38 : 375–387. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  26. Mazur W, Lindholm P, Vuorinen K, et al. Cell-specific elevation of NRF2 and sulfiredoxin-1 as markers of oxidative stress in the lungs of idiopathic pulmonary fibrosis and non-specific interstitial pneumonia. Apmis 2010 ; 118 : 703–712. [CrossRef] [PubMed]
  27. Artaud-Macari E, Goven D, Brayer S, et al. Modulation of fibroblast phenotype in idiopathic pulmonary fibrosis: role of Nrf2. Am J Respir Crit Care Med 2011 ; 183 : A5989.
  28. Marzec JM, Christie JD, Reddy SP, et al. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. Faseb J 2007 ; 21 : 2237–2246. [CrossRef] [PubMed]
  29. Kim SH, Choi GS, Ye YM, et al. Toluene diisocyanate (TDI) regulates haem oxygenase-1/ferritin expression: implications for toluene diisocyanate-induced asthma. Clin Exp Immunol 2010 ; 160 : 489–497. [CrossRef] [PubMed]
  30. Nichols DP, Ziady AG, Shank SL, et al. The triterpenoid CDDO limits inflammation in preclinical models of cystic fibrosis lung disease. Am J Physiol Lung Cell Mol Physiol 2009 ; 297 : L828–L836. [CrossRef] [PubMed]
  31. Rene C, Lopez E, Claustres M, et al. NF-E2-related factor 2, a key inducer of antioxidant defenses, negatively regulates the CFTR transcription. Cell Mol Life Sci 2010 ; 67 : 2297–2309. [CrossRef] [PubMed]
  32. Ohta T, Iijima K, Miyamoto M, et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 2008 ; 68 : 1303–1309. [CrossRef] [PubMed]
  33. Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 2006 ; 8 : 76–87. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  34. Boutten A, Goven D, Artaud-Macari E, et al. NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease. Trends Mol Med 2011 ; 17 : 363–371. [CrossRef] [PubMed]
  35. Spira A, Beane JE, Shah V, et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med 2007 ; 13 : 361–366. [CrossRef] [PubMed]
  36. Aoki Y, Hashimoto AH, Amanuma K, et al. Enhanced spontaneous and benzo(a)pyrene-induced mutations in the lung of Nrf2-deficient gpt delta mice. Cancer Res 2007 ; 67 : 5643–5648. [CrossRef] [PubMed]
  37. Martin-Montalvo A, Villalba JM, Navas P, de Cabo R. NRF2, cancer and calorie restriction. Oncogene 2010 ; 30 : 505–520. [CrossRef] [PubMed]
  38. Shibata T, Ohta T, Tong KI, et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci USA 2008 ; 105 : 13568–13573. [CrossRef]
  39. Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 2009 ; 34 : 176–188. [CrossRef] [PubMed]
  40. Niso-Santano M, Gonzalez-Polo RA, Bravo-San Pedro JM, et al. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis. Free Radic Biol Med 2010 ; 48 : 1370–1381. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  41. Shah ZA, Li RC, Ahmad AS, et al. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J Cereb Blood Flow Metab 2010 ; 30 : 1951–1961. [CrossRef] [PubMed]
  42. Mann GE, Bonacasa B, Ishii T, Siow RC. Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones. Curr Opin Pharmacol 2009 ; 9 : 139–145. [CrossRef] [PubMed]
  43. Yoon HY, Kang NI, Lee HK, et al. Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem Pharmacol 2008 ; 75 : 2214–2223. [CrossRef] [PubMed]
  44. Hsu CL, Wu YL, Tang GJ, et al. Ginkgo biloba extract confers protection from cigarette smoke extract-induced apoptosis in human lung endothelial cells: role of heme oxygenase-1. Pulm Pharmacol Ther 2009 ; 22 : 286–296. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  45. Yang L, Calingasan NY, Thomas B, et al. Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription. PLoS One 2009 ; 4 : e5757. [CrossRef] [PubMed]
  46. Ichikawa T, Li J, Meyer CJ, et al. Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes. PLoS One 2009 ; 4 : e8391. [CrossRef] [PubMed]
  47. Sussan TE, Rangasamy T, Blake DJ, et al. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci USA 2009 ; 106 : 250–255. [CrossRef]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.