Free Access
Issue
Med Sci (Paris)
Volume 27, Number 11, Novembre 2011
Page(s) 973 - 978
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20112711013
Published online 30 November 2011
  1. Melnick A, Licht JD. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999 ; 93 : 3167–3215. [PubMed] [Google Scholar]
  2. Qiu JJ, Lu X, Zeisig BB, et al. Leukemic transformation by the APL fusion protein PRKAR1A-RARalpha critically depends on recruitment of RXR{alpha}. Blood 2010 ; 115 : 643–652. [CrossRef] [PubMed] [Google Scholar]
  3. Nasr R, Lallemand-Breitenbach V, Zhu J, et al. Therapy-induced PML/RARA proteolysis and acute promyelocytic leukemia cure. Clin Cancer Res 2009 ; 15 : 6321–6326. [CrossRef] [PubMed] [Google Scholar]
  4. Germain P, Chambon P, Eichele G, et al. International union of pharmacology. LXIII. retinoid X receptors. Pharmacol Rev 2006 ; 58 : 760–772. [CrossRef] [PubMed] [Google Scholar]
  5. Defacque H, Commes T, Legouffe E, et al. Expression of retinoid X receptor alpha is increased upon monocytic cell differentiation. Biochem Biophys Res Commun 1996 ; 220 : 315–322. [CrossRef] [PubMed] [Google Scholar]
  6. Germain P, Iyer J, Zechel C, Gronemeyer H. Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 2002 ; 415 : 187–192. [CrossRef] [PubMed] [Google Scholar]
  7. Altucci L, Rossin A, Hirsch O, et al. Rexinoid-triggered differentiation and tumor-selective apoptosis of acute myeloid leukemia by protein kinase A-mediated desubordination of retinoid X receptor. Cancer Res 2005 ; 65 : 8754–8765. [CrossRef] [PubMed] [Google Scholar]
  8. Benoit G, Altucci L, Flexor M, et al. RAR-independent RXR signaling induces t(15;17) leukemia cell maturation. EMBO J 1999 ; 18 : 7011–7018. [CrossRef] [PubMed] [Google Scholar]
  9. KamashevD, Vitoux D, De Thé H. PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med 2004 ; 199 : 1163–1174. [CrossRef] [PubMed] [Google Scholar]
  10. Gaillard E, Bruck N, Brelivet Y, et al. Phosphorylation by PKA potentiates retinoic acid receptor alpha activity by means of increasing interaction with and phosphorylation by cyclin H/cdk7. Proc Natl Acad Sci USA 2006 ; 103 : 9548–9553. [CrossRef] [Google Scholar]
  11. Adam-Stitah S, Penna L, Chambon P, Rochette-Egly C. Hyperphosphorylation of the retinoid X receptor alpha by activated c-Jun NH2-terminal kinases. J Biol Chem 1999 ; 274 : 18932–18941. [CrossRef] [PubMed] [Google Scholar]
  12. Bastien J, Adam-Stitah S, Plassat JL, et al. The phosphorylation site located in the A region of retinoic X receptor alpha is required for the antiproliferative effect of retinoic acid (RA) and the activation of RA target genes in F9 cells. J Biol Chem 2002 ; 277 : 28683–28689. [CrossRef] [PubMed] [Google Scholar]
  13. Mann KK, Padovani AM, Guo Q, et al. Arsenic trioxide inhibits nuclear receptor function via SEK1/JNK-mediated RXRalpha phosphorylation. J Clin Invest 2005 ; 115 : 2924–2933. [CrossRef] [PubMed] [Google Scholar]
  14. Bruck N, Bastien J, Bour G, et al. Phosphorylation of the retinoid x receptor at the omega loop, modulates the expression of retinoic-acid-target genes with a promoter context specificity. Cell Signal 2005 ; 17 : 1229–1239. [CrossRef] [PubMed] [Google Scholar]
  15. Tarrade A, Bastien J, Bruck N, et al. Retinoic acid and arsenic trioxide cooperate for apoptosis through phosphorylated RXR alpha. Oncogene 2005 ; 24 : 2277–2288. [CrossRef] [PubMed] [Google Scholar]
  16. Zhao WX, Tian M, Zhao BX, et al. Orphan receptor TR3 attenuates the p300-induced acetylation of retinoid X receptor-alpha. Mol Endocrinol 2007 ; 21 : 2877–2889. [CrossRef] [PubMed] [Google Scholar]
  17. Choi SJ, Chung SS, Rho EJ, et al. Negative modulation of RXRalpha transcriptional activity by small ubiquitin-related modifier (SUMO) modification and its reversal by SUMO-specific protease SUSP1. J Biol Chem 2006 ; 281 : 30669–30677. [CrossRef] [PubMed] [Google Scholar]
  18. Shimizu M, Takai K, Moriwaki H. Strategy and mechanism for the prevention of hepatocellular carcinoma: phosphorylated retinoid X receptor alpha is a critical target for hepatocellular carcinoma chemoprevention. Cancer Sci 2009 ; 100 : 369–374. [CrossRef] [PubMed] [Google Scholar]
  19. Minucci S, Maccarana M, Cioce M, et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell 2000 ; 5 : 811–820. [CrossRef] [PubMed] [Google Scholar]
  20. Sternsdorf T, Phan VT, Maunakea ML, et al. Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 2006 ; 9 : 81–94. [CrossRef] [PubMed] [Google Scholar]
  21. Martens JH, Brinkman AB, Simmer F, et al. PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 2010 ; 17 : 173–185. [CrossRef] [PubMed] [Google Scholar]
  22. Perez A, Kastner P, Sethi S, et al. PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO J 1993 ; 12 : 3171–3182. [PubMed] [Google Scholar]
  23. Hu Q, Kwon YS, Nunez E, et al. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci USA 2008 ; 105 : 19199–19204. [CrossRef] [Google Scholar]
  24. Zhu J, Nasr R, Pérès L, et al. RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell 2007 ; 12 : 23–35. [CrossRef] [PubMed] [Google Scholar]
  25. Zhu J, Gianni M, Kopf E, et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci USA 1999 ; 96 : 14807–14812. [CrossRef] [Google Scholar]
  26. Zeisig BB, Kwok C, Zelent A, et al. Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 2007 ; 12 : 36–51. [CrossRef] [PubMed] [Google Scholar]
  27. Taschner S, Koesters C, Platzer B, et al. Down-regulation of RXRalpha expression is essential for neutrophil development from granulocyte/monocyte progenitors. Blood 2007 ; 109 : 971–979. [CrossRef] [PubMed] [Google Scholar]
  28. Guillemin MC, Raffoux E, Vitoux D, et al. In vivo activation of cAMP signaling induces growth arrest and differentiation in acute promyelocytic leukemia. J Exp Med 2002 ; 196 : 1373–1380. [CrossRef] [PubMed] [Google Scholar]
  29. Sukhai MA, Thomas M, Xuan Y, et al. Evidence of functional interaction between NuMA-RARalpha and RXRalpha in an in vivo model of acute promyelocytic leukemia. Oncogene 2008 ; 27 : 4666–4677. [CrossRef] [PubMed] [Google Scholar]
  30. Nasr R, Guillemin MC, Ferhi O, et al. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med 2008 ; 14 : 1333–1342. [CrossRef] [PubMed] [Google Scholar]
  31. Yokoyama A, Somervaille TC, Smith KS, et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 2005 ; 123 : 207–218. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.