Free Access
Issue
Med Sci (Paris)
Volume 27, Number 11, Novembre 2011
Page(s) 1019 - 1024
Section Prix Nobel 2011
DOI https://doi.org/10.1051/medsci/20112711020
Published online 30 November 2011
  1. Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 1985 ; 42 : 791–798. [CrossRef] [PubMed] [Google Scholar]
  2. Janeway C. Evolution and revolution in immunology. Cold Spring Harbor Symposia Quant Biol 1989 ; 54 : 1–13. [CrossRef] [Google Scholar]
  3. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994 ; 12 : 991–1045. [CrossRef] [PubMed] [Google Scholar]
  4. Steiner H, Hultmark D, Engstrom A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981 ; 292 : 246–248. [CrossRef] [PubMed] [Google Scholar]
  5. Dimarcq JL, Keppi E, Dunbar B, et al. Insect immunity. Purification and characterization of a family of novel inducible antibacterial proteins from immunized larvae of the dipteran Phormia terranovae and complete amino-acid sequence of the predominant member, diptericin A. Eur J Biochem 1988 ; 171 : 17–22. [CrossRef] [PubMed] [Google Scholar]
  6. Engstrom Y, Kadayalil L, Sun S, et al. kB-like motifs regulate the induction of immune genes in Drosophila. J Mol Biol 1993 ; 232 : 327–333. [CrossRef] [PubMed] [Google Scholar]
  7. Kappler C, Meister M, Lagueux M, et al. Insect immunity. Two 17bp repeats nesting a kB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J 1993 ; 12 : 1561–1568. [PubMed] [Google Scholar]
  8. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 1999 ; 284 : 1313–1318. [CrossRef] [PubMed] [Google Scholar]
  9. Reichhart J, Georgel P, Meister M, et al. Expression and nuclear translocation of the rel/NF-kB-related morphogen dorsal during the immune response of Drosophila. CR Acad Sci (Paris) 1993 ; 316 : 1218–1224. [Google Scholar]
  10. Fehlbaum P, Bulet P, Michaut L, et al. Insect immunity: septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 1994 ; 269 : 33159–33163. [PubMed] [Google Scholar]
  11. Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996 ; 86 : 973–983. [CrossRef] [PubMed] [Google Scholar]
  12. Rutschmann S, Jung A, Hetru C, et al. The Rel protein DIF mediates the Toll-dependent antifungal response in Drosophila. Immunity 2000 ; 12 : 569–580. [CrossRef] [PubMed] [Google Scholar]
  13. Hedengren M, Asling B, Dushay M, et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 1999 ; 4 : 1–20. [CrossRef] [PubMed] [Google Scholar]
  14. Lemaitre B, Kromer-Metzger E, Michaut L, et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci USA 1995 ; 92 : 9365–9369. [CrossRef] [Google Scholar]
  15. Medzhitov R, Preston-Hurlburt P, Janeway C. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997 ; 388 : 394–397. [CrossRef] [PubMed] [Google Scholar]
  16. Beutler B, Greenwald D, Hulmes JD, et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 1985 ; 316 : 552–554. [CrossRef] [PubMed] [Google Scholar]
  17. Peppel K, Crawford D, Beutler B. A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J Exp Med 1991 ; 174 : 1483–1489. [CrossRef] [PubMed] [Google Scholar]
  18. Cerami A, Beutler B. The role of cachectin/TNF in endotoxic shock and cachexia. Immunol Today 1988 ; 9 : 28–31. [CrossRef] [PubMed] [Google Scholar]
  19. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998 ; 282 : 2085–2088. [CrossRef] [PubMed] [Google Scholar]
  20. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999 ; 11 : 443–451. [CrossRef] [PubMed] [Google Scholar]
  21. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010 ; 11 : 373–384. [CrossRef] [PubMed] [Google Scholar]
  22. Jin MS, Lee JO. Structures of the toll-like receptor family and its ligand complexes. Immunity 2008 ; 29 : 182–191. [CrossRef] [PubMed] [Google Scholar]
  23. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010 ; 140 : 805–820. [CrossRef] [PubMed] [Google Scholar]
  24. Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 2007 ; 317 : 1522–1527. [CrossRef] [PubMed] [Google Scholar]
  25. Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 2011 ; 29 : 447–491. [CrossRef] [PubMed] [Google Scholar]
  26. Philpott DJ, Girardin SE. Nod-like receptors: sentinels at host membranes. Curr Opin Immunol 2011 ; 22 : 428–434. [CrossRef] [Google Scholar]
  27. Yoneyama M, Fujita T. Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 2008 ; 29 : 178–181. [CrossRef] [PubMed] [Google Scholar]
  28. Keogh B, Parker AE. Toll-like receptors as targets for immune disorders. Trends Pharmacol Sci 2011 ; 32 : 435–442. [CrossRef] [PubMed] [Google Scholar]
  29. Kasturi SP, Skountzou I, Albrecht RA, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 2011 ; 470 : 543–547. [CrossRef] [PubMed] [Google Scholar]
  30. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010 ; 33 : 492–503. [CrossRef] [PubMed] [Google Scholar]
  31. Green NM, Marshak-Rothstein A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol 2011 ; 23 : 106–112. [CrossRef] [PubMed] [Google Scholar]
  32. Schroder K, Tschopp J. The inflammasomes. Cell 2010 ; 140 : 821–832. [CrossRef] [PubMed] [Google Scholar]
  33. Imler JL, Reichhart JM. Immunité innée : deux récepteurs pour détecter l’ADN bactérien. Med Sci (Paris) 2001 ; 17 : 510–512. [CrossRef] [Google Scholar]
  34. Hoffmann JA, Dimarcq JL, Bulet P. Les peptides antibactériens inductibles des insectes. Med Sci (Paris) 1992 ; 8 : 432–439. [CrossRef] [Google Scholar]
  35. Sibilia J. Protéine de fusion ou anticorps monoclonal: quel biomédicament choisir dans une maladie inflammatoire. Med Sci (Paris) 2009 ; 25 : 1033–1038. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Delneste Y, Beauvillain C, Jeannin P. Immunité naturelle : structure et fonction des Toll-like receptors. Med Sci (Paris) 2007 ; 23 : 67–73. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Vavre F, Mavingui P. Les bactéries symbiotiques d’arthropodes et de nématodes : de nouvelles alliées dans le contrôle des maladies infectieuses. Med Sci (Paris) 2011 ; 27 : 953–958. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Renaud F. Vivre avec les pathogènes au XXIe siècle. Med Sci (Paris) 2011 ; 27 : 919–920. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.