Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 11, Novembre 2011
Page(s) 1019 - 1024
Section Prix Nobel 2011
DOI https://doi.org/10.1051/medsci/20112711020
Publié en ligne 30 novembre 2011
  1. Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 1985 ; 42 : 791–798. [CrossRef] [PubMed] [Google Scholar]
  2. Janeway C. Evolution and revolution in immunology. Cold Spring Harbor Symposia Quant Biol 1989 ; 54 : 1–13. [CrossRef] [Google Scholar]
  3. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994 ; 12 : 991–1045. [CrossRef] [PubMed] [Google Scholar]
  4. Steiner H, Hultmark D, Engstrom A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981 ; 292 : 246–248. [CrossRef] [PubMed] [Google Scholar]
  5. Dimarcq JL, Keppi E, Dunbar B, et al. Insect immunity. Purification and characterization of a family of novel inducible antibacterial proteins from immunized larvae of the dipteran Phormia terranovae and complete amino-acid sequence of the predominant member, diptericin A. Eur J Biochem 1988 ; 171 : 17–22. [CrossRef] [PubMed] [Google Scholar]
  6. Engstrom Y, Kadayalil L, Sun S, et al. kB-like motifs regulate the induction of immune genes in Drosophila. J Mol Biol 1993 ; 232 : 327–333. [CrossRef] [PubMed] [Google Scholar]
  7. Kappler C, Meister M, Lagueux M, et al. Insect immunity. Two 17bp repeats nesting a kB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J 1993 ; 12 : 1561–1568. [PubMed] [Google Scholar]
  8. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 1999 ; 284 : 1313–1318. [CrossRef] [PubMed] [Google Scholar]
  9. Reichhart J, Georgel P, Meister M, et al. Expression and nuclear translocation of the rel/NF-kB-related morphogen dorsal during the immune response of Drosophila. CR Acad Sci (Paris) 1993 ; 316 : 1218–1224. [Google Scholar]
  10. Fehlbaum P, Bulet P, Michaut L, et al. Insect immunity: septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 1994 ; 269 : 33159–33163. [PubMed] [Google Scholar]
  11. Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996 ; 86 : 973–983. [CrossRef] [PubMed] [Google Scholar]
  12. Rutschmann S, Jung A, Hetru C, et al. The Rel protein DIF mediates the Toll-dependent antifungal response in Drosophila. Immunity 2000 ; 12 : 569–580. [CrossRef] [PubMed] [Google Scholar]
  13. Hedengren M, Asling B, Dushay M, et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 1999 ; 4 : 1–20. [CrossRef] [PubMed] [Google Scholar]
  14. Lemaitre B, Kromer-Metzger E, Michaut L, et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci USA 1995 ; 92 : 9365–9369. [CrossRef] [Google Scholar]
  15. Medzhitov R, Preston-Hurlburt P, Janeway C. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997 ; 388 : 394–397. [CrossRef] [PubMed] [Google Scholar]
  16. Beutler B, Greenwald D, Hulmes JD, et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 1985 ; 316 : 552–554. [CrossRef] [PubMed] [Google Scholar]
  17. Peppel K, Crawford D, Beutler B. A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J Exp Med 1991 ; 174 : 1483–1489. [CrossRef] [PubMed] [Google Scholar]
  18. Cerami A, Beutler B. The role of cachectin/TNF in endotoxic shock and cachexia. Immunol Today 1988 ; 9 : 28–31. [CrossRef] [PubMed] [Google Scholar]
  19. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998 ; 282 : 2085–2088. [CrossRef] [PubMed] [Google Scholar]
  20. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999 ; 11 : 443–451. [CrossRef] [PubMed] [Google Scholar]
  21. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010 ; 11 : 373–384. [CrossRef] [PubMed] [Google Scholar]
  22. Jin MS, Lee JO. Structures of the toll-like receptor family and its ligand complexes. Immunity 2008 ; 29 : 182–191. [CrossRef] [PubMed] [Google Scholar]
  23. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010 ; 140 : 805–820. [CrossRef] [PubMed] [Google Scholar]
  24. Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 2007 ; 317 : 1522–1527. [CrossRef] [PubMed] [Google Scholar]
  25. Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 2011 ; 29 : 447–491. [CrossRef] [PubMed] [Google Scholar]
  26. Philpott DJ, Girardin SE. Nod-like receptors: sentinels at host membranes. Curr Opin Immunol 2011 ; 22 : 428–434. [CrossRef] [Google Scholar]
  27. Yoneyama M, Fujita T. Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 2008 ; 29 : 178–181. [CrossRef] [PubMed] [Google Scholar]
  28. Keogh B, Parker AE. Toll-like receptors as targets for immune disorders. Trends Pharmacol Sci 2011 ; 32 : 435–442. [CrossRef] [PubMed] [Google Scholar]
  29. Kasturi SP, Skountzou I, Albrecht RA, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 2011 ; 470 : 543–547. [CrossRef] [PubMed] [Google Scholar]
  30. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010 ; 33 : 492–503. [CrossRef] [PubMed] [Google Scholar]
  31. Green NM, Marshak-Rothstein A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol 2011 ; 23 : 106–112. [CrossRef] [PubMed] [Google Scholar]
  32. Schroder K, Tschopp J. The inflammasomes. Cell 2010 ; 140 : 821–832. [CrossRef] [PubMed] [Google Scholar]
  33. Imler JL, Reichhart JM. Immunité innée : deux récepteurs pour détecter l’ADN bactérien. Med Sci (Paris) 2001 ; 17 : 510–512. [CrossRef] [Google Scholar]
  34. Hoffmann JA, Dimarcq JL, Bulet P. Les peptides antibactériens inductibles des insectes. Med Sci (Paris) 1992 ; 8 : 432–439. [CrossRef] [Google Scholar]
  35. Sibilia J. Protéine de fusion ou anticorps monoclonal: quel biomédicament choisir dans une maladie inflammatoire. Med Sci (Paris) 2009 ; 25 : 1033–1038. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Delneste Y, Beauvillain C, Jeannin P. Immunité naturelle : structure et fonction des Toll-like receptors. Med Sci (Paris) 2007 ; 23 : 67–73. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Vavre F, Mavingui P. Les bactéries symbiotiques d’arthropodes et de nématodes : de nouvelles alliées dans le contrôle des maladies infectieuses. Med Sci (Paris) 2011 ; 27 : 953–958. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Renaud F. Vivre avec les pathogènes au XXIe siècle. Med Sci (Paris) 2011 ; 27 : 919–920. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.