Free Access
Issue
Med Sci (Paris)
Volume 27, Number 10, Octobre 2011
Page(s) 882 - 888
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20112710017
Published online 21 October 2011
  1. Peters RP, van Agtmael MA, Danner SA, et al. New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 2004 ; 4 : 751–760. [CrossRef] [PubMed] [Google Scholar]
  2. Anhalt JP, Fenselau C. Identification of bacteria using mass spectrometry. Anal Chem 1975 ; 47 : 219–225. [CrossRef] [Google Scholar]
  3. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988 ; 60 : 2299–2301. [CrossRef] [PubMed] [Google Scholar]
  4. Ecker DJ, Sampath R, Massire C, et al. Ibis T5000 : a universal biosensor approach for microbiology. Nat Rev Microbiol 2008 ; 6 : 553–558. [CrossRef] [PubMed] [Google Scholar]
  5. Ecker DJ, Sampath R, Li H, et al. New technology for rapid molecular diagnosis of bloodstream infections. Expert Rev Mol Diagn 2010 ; 10 : 399–415. [CrossRef] [PubMed] [Google Scholar]
  6. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 1996 ; 14 : 1584–1586. [CrossRef] [PubMed] [Google Scholar]
  7. Valentine N, Wunschel S, Wunschel D, et al. Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol 2005 ; 71 : 58–64. [CrossRef] [PubMed] [Google Scholar]
  8. Ryzhov V, Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem 2001 ; 73 : 746–750. [CrossRef] [PubMed] [Google Scholar]
  9. Carbonnelle E, Beretti JL, Cottyn S, et al. Rapid identification of Staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2007 ; 45 : 2156–2161. [CrossRef] [PubMed] [Google Scholar]
  10. Lotz A, Ferroni A, Beretti JL, et al. Rapid identification of mycobacterial whole cells in solid and liquid culture media by MALDI-TOF MS. J Clin Microbiol 2010 ; 48 : 4481–4486. [CrossRef] [PubMed] [Google Scholar]
  11. Alanio A, Beretti JL, Dauphin B, et al. MALDI-TOF Mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin Microbiol Infect 2011 ; 17 : 750–755. [CrossRef] [PubMed] [Google Scholar]
  12. Cherkaoui A, Hibbs J, Emonet S, et al. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 2010 ; 48 : 1169–1175. [CrossRef] [PubMed] [Google Scholar]
  13. Seng P, Drancourt M, Gouriet F, et al. Ongoing revolution in bacteriology : routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009 ; 49 : 543–551. [CrossRef] [PubMed] [Google Scholar]
  14. Van Veen SQ, Claas EC, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) in routine medical microbiology laboratory. J Clin Microbiol 2010 ; 48 : 900–907. [CrossRef] [PubMed] [Google Scholar]
  15. Blondiaux N, Gaillot O, Courcol RJ. MALDI-TOF mass spectrometry to identify clinical bacterial isolates : Evaluation in a teaching hospital. Pathol Biol (Paris) 2010 ; 58 : 55–57. [CrossRef] [PubMed] [Google Scholar]
  16. Bizzini A, Durussel C, Bille J, et al. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 2010 ; 48 : 1549–1554. [CrossRef] [PubMed] [Google Scholar]
  17. Gravet A, Camdessoucens-Miehe G, Gessier M, et al. The use in routine of mass spectrometry in a hospital microbiology laboratory. Pathol Biol (Paris) 2011 ; 59 : 19–25. [CrossRef] [PubMed] [Google Scholar]
  18. Bessede E, Angla-Gre M, Delagarde Y, et al. MALDI Biotyper, experience in the routine of a University hospital. Clin Microbiol Infect 2011 ; 17 : 533–538. [CrossRef] [PubMed] [Google Scholar]
  19. La Scola B, Raoult D. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PLoS One 2009 ; 4 : e8041. [CrossRef] [PubMed] [Google Scholar]
  20. Stevenson LG, Drake SK, Murray PR. Rapid identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. J Clin Microbiol 2009 ; 48 : 444–447. [CrossRef] [PubMed] [Google Scholar]
  21. Ferroni A, Suarez S, Beretti JL, et al. Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2010 ; 48 : 1542–1548. [CrossRef] [PubMed] [Google Scholar]
  22. Christner M, Rohde H, Wolters M, et al. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol 2010 ; 48 : 1584–1591. [CrossRef] [PubMed] [Google Scholar]
  23. Ferreira L, Sanchez-Juanes F, Gonzalez-Avila M, et al. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2010 ; 48 : 2110–2115. [CrossRef] [PubMed] [Google Scholar]
  24. Prod’hom G, Bizzini A, Durussel C, et al. MALDI-TOF mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol 2010 ; 48 : 1481–1483. [CrossRef] [PubMed] [Google Scholar]
  25. Moussaoui W, Jaulhac B, Hoffmann AM, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90 % of bacteria directly from blood culture vials. Clin Microbiol Infect 2010 ; 16 : 1631–1638. [CrossRef] [PubMed] [Google Scholar]
  26. Ferreira L, Sanchez-Juanes F, Guerra IP, et al. Microorganisms Direct Identification from blood culture by Maldi-Tof mass spectrometry. Clin Microbiol Infect 2011 ; 17 : 546–551. [CrossRef] [PubMed] [Google Scholar]
  27. Ferreira L, Sanchez-Juanes F, Munoz-Bellido JL, Gonzalez-Buitrago JM. Rapid method for direct identification of bacteria in urine and blood culture samples by MALDI-TOF MS : intact cell vs. extraction method. Clin Microbiol Infect 2011 ; 17 : 1007–1012. [CrossRef] [PubMed] [Google Scholar]
  28. Bittar F, Ouchenane Z, Smati F, et al. MALDI-TOF-MS for rapid detection of staphylococcal Panton-Valentine leukocidin. Int J Antimicrob Agents 2009 ; 34 : 67–70. [CrossRef] [PubMed] [Google Scholar]
  29. Dauwalder O, Carbonnelle E, Benito Y, et al. Detection of Panton-Valentine toxin in Staphylococcus aureus by mass spectrometry directly from colony : time has not yet come. Int J Antimicrob Agents 2010 ; 36 : 193–194. [CrossRef] [PubMed] [Google Scholar]
  30. Camara JE, Hays FA. Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem 2007 ; 389 : 1633–1638. [CrossRef] [PubMed] [Google Scholar]
  31. Du Z, Yang R, Guo Z, et al. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 2002 ; 74 : 5487–5491. [CrossRef] [PubMed] [Google Scholar]
  32. Jackson KA, Edwards-Jones V, Sutton CW, Fox AJ. Optimisation of intact cell MALDI method for fingerprinting of methicillin-resistant Staphylococcus aureus. J Microbiol Methods 2005 ; 62 : 273–284. [CrossRef] [PubMed] [Google Scholar]
  33. Gonçalves A, Bertucci F, Birnbaum D, Borg JP., Profiling protéique SELDI-TOF et cancer du sein : applications cliniques potentielles. Med Sci (Paris) 2007 ; 23 (suppl 1) : 23–26. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Emadali A, Gallagher-Gambarelli M. La protéomique quantitative par la méthode SILAC : technique et perspectives. Med Sci (Paris) 2009 ; 25 : 835–842. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Nordmann P. Résistance aux carbapénèmes chez les bacilles à Gram négatif. Med Sci (Paris) 2010 ; 26 : 950–959. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Barbier F, Wolff M. Multirésistance chez Pseudomonas aeruginosa : vers l’impasse thérapeutique ? Med Sci (Paris) 2010 ; 26 : 960–968. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Dumitrescu O, Dauwalder O, Boisset S, et al. Résistance aux antibiotiques chez Staphylococcus aureus : les points-clés en 2010. Med Sci (Paris) 2010 ; 26 : 943–949. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Trémolières F. Quand le miracle antibiotique vire au cauchemar. Med Sci (Paris) 2010 ; 26 : 925–929. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.