Free Access
Med Sci (Paris)
Volume 27, Number 5, Mai 2011
Page(s) 527 - 534
Section M/S Revues
Published online 25 May 2011
  1. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988 ; 55 : 1189-1193. [CrossRef] [PubMed] [Google Scholar]
  2. Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A. Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 1991 ; 88 : 1864-1868. [CrossRef] [Google Scholar]
  3. Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994 ; 269 : 10444-10450. [PubMed] [Google Scholar]
  4. Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997 ; 272 : 16010-16017. [CrossRef] [PubMed] [Google Scholar]
  5. Esteve E, Mabrouk K, Dupuis A, et al.Transduction of the scorpion toxin maurocalcine into cells. Evidence that the toxin crosses the plasma membrane. J Biol Chem 2005 ; 280 : 12833-12839. [CrossRef] [PubMed] [Google Scholar]
  6. Fajloun Z, Kharrat R, Chen L, et al.Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates Ca2+ release channel/ryanodine receptors. FEBS Lett 2000 ; 469 : 179-185. [CrossRef] [PubMed] [Google Scholar]
  7. Altafaj X, Cheng W, Esteve E, et al. Maurocalcine and domain A of the II-III loop of the dihydropyridine receptor Cav 1.1 subunit share common binding sites on the skeletal ryanodine receptor. J Biol Chem 2005 ; 280 : 4013-4016. [CrossRef] [PubMed] [Google Scholar]
  8. Esteve E, Smida-Rezgui S, Sarkozi S, et al. Critical amino acid residues determine the binding affinity and the Ca2+ release efficacy of maurocalcine in skeletal muscle cells. J Biol Chem 2003 ; 278 : 37822-37831. [CrossRef] [PubMed] [Google Scholar]
  9. Ram N, Weiss N, Texier-Nogues I, et al. Design of a disulfide-less, pharmacologically inert, and chemically competent analog of maurocalcine for the efficient transport of impermeant compounds into cells. J Biol Chem 2008 ; 283 : 27048-27056. [CrossRef] [PubMed] [Google Scholar]
  10. Konate K, Crombez L, Deshayes S, et al. Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery. Biochemistry 2010 ; 49 : 3393-3402. [CrossRef] [PubMed] [Google Scholar]
  11. Crombez L, Charnet A, Morris MC, et al. A non-covalent peptide-based strategy for siRNA delivery. Biochem Soc Trans 2007 ; 35 : 44-46. [CrossRef] [PubMed] [Google Scholar]
  12. Morris MC, Depollier J, Mery J, et al. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 2001 ; 19 : 1173-1176. [CrossRef] [PubMed] [Google Scholar]
  13. Pooga M, Hallbrink M, Zorko M, Langel U. Cell penetration by transportan. FASEB J 1998 ; 12 : 67-77. [PubMed] [Google Scholar]
  14. Zhang C, Tang N, Liu X, et al.siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release 2006 ; 112 : 229-239. [CrossRef] [PubMed] [Google Scholar]
  15. Radis-Baptista G, de la Torre BG, Andreu D. A novel cell-penetrating peptide sequence derived by structural minimization of a snake toxin exhibits preferential nucleolar localization. J Med Chem 2008 ; 51 : 7041-7044. [CrossRef] [PubMed] [Google Scholar]
  16. Herbig ME, Weller K, Krauss U, et al. Membrane surface-associated helices promote lipid interactions and cellular uptake of human calcitonin-derived cell penetrating peptides. Biophys J 2005 ; 89 : 4056-4066. [CrossRef] [PubMed] [Google Scholar]
  17. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003 ; 55 : 27-55. [CrossRef] [PubMed] [Google Scholar]
  18. Deshayes S, Plenat T, Charnet P, et al. Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochim Biophys Acta 2006 ; 1758 : 1846-1851. [CrossRef] [PubMed] [Google Scholar]
  19. Henriques ST, Castanho MA. Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles. Biochemistry 2004 ; 43 : 9716-9724. [CrossRef] [PubMed] [Google Scholar]
  20. Binder H, Lindblom G. Charge-dependent translocation of the Trojan peptide penetratin across lipid membranes. Biophys J 2003 ; 85 : 982-995. [CrossRef] [PubMed] [Google Scholar]
  21. Conner SD, Schmid SLRegulated portals of entry into the cell. Nature 2003 ; 422 : 37-44. [CrossRef] [PubMed] [Google Scholar]
  22. Brasseur R, Divita G. Happy birthday cell penetrating peptides: already 20 years. Biochim Biophys Acta 2010 ; 1798 : 2177-2178. [CrossRef] [PubMed] [Google Scholar]
  23. Khafagy el S, Morishita M, Kamei N, et al. Efficiency of cell-penetrating peptides on the nasal and intestinal absorption of therapeutic peptides and proteins. Int J Pharm 2009 ; 381 : 49-55. [CrossRef] [PubMed] [Google Scholar]
  24. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001 ; 411 : 494-498. [CrossRef] [PubMed] [Google Scholar]
  25. Simeoni F, Morris MC, Heitz F, Divita G. Peptide-based strategy for siRNA delivery into mammalian cells. Methods Mol Biol 2005 ; 309 : 251-260. [PubMed] [Google Scholar]
  26. Lundberg P, El-Andaloussi S, Sutlu T, et al. Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J 2007 ; 21 : 2664-2671. [CrossRef] [PubMed] [Google Scholar]
  27. Medarova Z, Pham W, Farrar C, et al. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 2007 ; 13 : 372-377. [CrossRef] [PubMed] [Google Scholar]
  28. Choi YS, Lee JY, Suh JS, et al. The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 2011(sous presse). [Google Scholar]
  29. Muratovska A, Eccles MR. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 2004 ; 558 : 63-68. [CrossRef] [PubMed] [Google Scholar]
  30. Davidson TJ, Harel S, Arboleda VA, et al.. Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci 2004 ; 24 : 10040-10046. [CrossRef] [PubMed] [Google Scholar]
  31. Choi Y-S, Lee JY, Suh JS, et al. The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 2010 ; 31 : 1429-1443. [CrossRef] [PubMed] [Google Scholar]
  32. Crombez L, Morris MC, Dufort S, et al. Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res 2009 ; 37 : 4559-4569. [CrossRef] [PubMed] [Google Scholar]
  33. Josephson L, Tung CH, Moore A, Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 1999 ; 10 : 186-191. [CrossRef] [PubMed] [Google Scholar]
  34. Jayagopal A, Su YR, Blakemore JL, et al.Quantum dot mediated imaging of atherosclerosis. Nanotechnology 2009 ; 20 : 165102. [CrossRef] [PubMed] [Google Scholar]
  35. Sawicka M, Kalinowska M, Skierski J, Lewandowski W. A review of selected anti-tumour therapeutic agents and reasons for multidrug resistance occurrence. J Pharm Pharmacol 2004 ; 56 : 1067-1081. [CrossRef] [PubMed] [Google Scholar]
  36. Aroui S, Ram N, Appaix F, et al. Maurocalcine as a non toxic drug carrier overcomes doxorubicin resistance in the cancer cell line MDA-MB 231. Pharm Res 2009 ; 26 : 836-845. [CrossRef] [PubMed] [Google Scholar]
  37. Aroui S. Maurocalcine as a non toxic drug carrier overcomes doxorubicin resistance in the cancer cell line MDA-MB 231. Pharm Res 2009 ; 26 : 836-845. [CrossRef] [PubMed] [Google Scholar]
  38. Liang JF, Yang VC. Synthesis of doxorubicin-peptide conjugate with multidrug resistant tumor cell killing activity. Bioorg Med Chem Lett 2005 ; 15 : 5071-5075. [CrossRef] [PubMed] [Google Scholar]
  39. Lindgren M, Rosenthal-Aizman K, Saar K, et al. Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 2006 ; 71 : 416-425. [CrossRef] [PubMed] [Google Scholar]
  40. Niu R, Zhao P, Wang Het al.Preparation, characterization, and antitumor activity of paclitaxel-loaded folic acid modified and TAT peptide conjugated PEGylated polymeric liposomes. J Drug Target 2011(sous presse) [Google Scholar]
  41. Olson ES, Jiang T, Aguilera TA, et al.Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci USA 107 : 4311-4316. [Google Scholar]
  42. Kersemans V, Kersemans K, Cornelissen B. Cell penetrating peptides for in vivo molecular imaging applications. Curr Pharm Des 2008 ; 14 : 2415-2447. [CrossRef] [PubMed] [Google Scholar]
  43. Nguyen QT, Olson ES, Aguilera TA, et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci USA 107 : 4317-4322. [Google Scholar]
  44. Su W, Mishra R, Pfeuffer J, et al.Synthesis and cellular uptake of a MR contrast agent coupled to an antisense peptide nucleic acid: cell-penetrating peptide conjugate. Contrast Media Mol Imaging 2007 ; 2 : 42-49. [Google Scholar]
  45. Heitz F, Morris MC, Divita GTwenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 2009 ; 157 : 195-206. [CrossRef] [PubMed] [Google Scholar]
  46. Johnson JL, Lowell BC, Ryabinina OP, et al.TAT-mediated delivery of a DNA repair enzyme to skin cells rapidly initiates repair of UV-induced DNA damage. J Invest Dermatol 2011 ; 131 : 753-761. [CrossRef] [PubMed] [Google Scholar]
  47. Perea SE, Reyes O, Puchades Y, et al. Antitumor effect of a novel proapoptotic peptide that impairs the phosphorylation by the protein kinase 2 (casein kinase 2). Cancer Res 2004 ; 64 : 7127-7129. [CrossRef] [PubMed] [Google Scholar]
  48. Khafagy el S, Morishita M, Takayama KThe role of intermolecular interactions with penetratin and its analogue on the enhancement of absorption of nasal therapeutic peptides. Int J Pharm 2010 ; 388 : 209-212. [CrossRef] [PubMed] [Google Scholar]
  49. Pooga M, Kut C, Kihlmark M, et al. Cellular translocation of proteins by transportan. FASEB J 2001 ; 15 : 1451-1453. [PubMed] [Google Scholar]
  50. Chaubey B, Tripathi S, Ganguly S, et al. A PNA-transportan conjugate targeted to the TAR region of the HIV-1 genome exhibits both antiviral and virucidal properties. Virology 2005 ; 331 : 418-428. [CrossRef] [PubMed] [Google Scholar]
  51. Kim DW, Jeong HJ, Kang HW, et al. Transduced human PEP-1-catalase fusion protein attenuates ischemic neuronal damage. Free Radic Biol Med 2009 ; 47 : 941-952. [CrossRef] [PubMed] [Google Scholar]
  52. Morris MC, Vidal P, Chaloin L, et al. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 1997 ; 25 : 2730-2736. [CrossRef] [PubMed] [Google Scholar]
  53. Crombez L, Aldrian-Herrada G, Konate K, et al. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 2009 ; 17 : 95-103. [CrossRef] [PubMed] [Google Scholar]
  54. Hallbrink M, Floren A, Elmquist A, et al. Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta 2001 ; 1515 : 101-109. [CrossRef] [PubMed] [Google Scholar]
  55. Harel-Bellan A. Prix Nobel de médecine 2006. Andrew Z. Fire et Craig C. Mello : silence, on désactive les gènes. Med Sci (Paris) 2006 ; 22 : 993-994. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  56. Horcajada P, Serre C, Férey G, et al. Des nanovecteurs hybrides pour la restitution retard de médicaments antitumoraux et antiviraux. Med Sci (Paris) 2010 ; 26 : 761-767. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  57. Nicolas MR, Moreau M. Prix Nobel de chimie 2008 (Osumo Shimomura, Martin Chalfie et Roger Y. Tsien). Med Sci (Paris) 2008 ; 24 : 983-984. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.