Free Access
Issue
Med Sci (Paris)
Volume 27, Number 5, Mai 2011
Page(s) 521 - 526
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2011275018
Published online 25 May 2011
  1. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961 ; 9 : 493-495. [CrossRef] [PubMed] [Google Scholar]
  2. Lagha M, Rocancourt D, Relaix F. Origine du muscle squelettique : rôles de Pax3/Pax7. Med Sci (Paris) 2005 ; 21 : 801-803. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Zammit PS, Partridge TA, Yablonka-Reuveni Z. The skeletal muscle satellite cell : the stem cell that came in from the cold. J Histochem Cytochem 2006 ; 54 : 1177-1191. [CrossRef] [PubMed] [Google Scholar]
  4. Lai EC. Notch signaling : control of cell communication and cell fate. Development 2004 ; 131 : 965-973. [CrossRef] [PubMed] [Google Scholar]
  5. Borggrefe T, Oswald F. The Notch signaling pathway : transcriptional regulation at Notch target genes. Cell Mol Life Sci 2009 ; 66 : 1631-1646. [CrossRef] [PubMed] [Google Scholar]
  6. Brou C, Logeat F. Endocytose et voie de signalisation Notch. Med Sci (Paris) 2006 ; 22 : 685-688. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Kopan R, Ilagan MX. The canonical Notch signaling pathway : unfolding the activation mechanism. Cell 2009 ; 137 : 216-233. [CrossRef] [PubMed] [Google Scholar]
  8. Bray SJ. Notch signalling : a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006 ; 7 : 678-689. [CrossRef] [PubMed] [Google Scholar]
  9. Yang LT, Nichols JT, Yao C, et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 2005 ; 16 : 927-942. [CrossRef] [PubMed] [Google Scholar]
  10. Freitas C, Rodrigues S, Charrier JP, et al. Horloge moléculaire et segmentation des vertébrés : qui fait quoi ? Med Sci (Paris) 2002 ; 18 : 883-887. [CrossRef] [EDP Sciences] [Google Scholar]
  11. Dequeant ML, Pourquie O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 2008 ; 9 : 370-382. [Google Scholar]
  12. Ozbudak EM, Pourquie O. The vertebrate segmentation clock : the tip of the iceberg. Curr Opin Genet Dev 2008 ; 18 : 317-323. [CrossRef] [PubMed] [Google Scholar]
  13. Ferjentsik Z, Hayashi S, Dale JK, et al. Notch is a critical component of the mouse somitogenesis oscillator, is essential for the formation of the somites. PLoS genetics 2009 ; 5 : e1000662. [CrossRef] [PubMed] [Google Scholar]
  14. Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs : Pax3 and Pax7 regulate muscle progenitor cell functions. Annual review of cell and developmental biology 2007 ; 23 : 645-673. [CrossRef] [PubMed] [Google Scholar]
  15. Buckingham M, Vincent SD. Distinct and dynamic myogenic populations in the vertebrate embryo. Curr Opin Genet Dev 2009 ; 19 : 444-453. [Google Scholar]
  16. Ben-Yair R, Kalcheim C. Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle. J Cell Biol 2008 ; 180 : 607-618. [CrossRef] [PubMed] [Google Scholar]
  17. Delfini MC, Hirsinger E, Pourquie O, Duprez D. Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 2000 ; 127 : 5213-5224. [PubMed] [Google Scholar]
  18. Hirsinger E, Malapert P, Dubrulle J, et al. Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development 2001 ; 128 : 107-116. [PubMed] [Google Scholar]
  19. Kopan R, Nye JS, Weintraub H. The intracellular domain of mouse Notch : a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 1994 ; 120 : 2385-2396. [PubMed] [Google Scholar]
  20. Jarriault S, Brou C, Logeat F, et al. Signalling downstream of activated mammalian Notch. Nature 1995 ; 377 : 355-358. [CrossRef] [PubMed] [Google Scholar]
  21. Kuroda K, Tani S, Tamura K, et al. Delta-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J Biol Chem 1999 ; 274 : 7238-7244. [CrossRef] [PubMed] [Google Scholar]
  22. Buas MF, Kabak S, Kadesch T. Inhibition of myogenesis by Notch : evidence for multiple pathways. J Cell Physiol 2009 ; 218 : 84-93. [CrossRef] [PubMed] [Google Scholar]
  23. Shawber C, Nofziger D, Hsieh JJ, et al. Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 1996 ; 122 : 3765-3773. [PubMed] [Google Scholar]
  24. Schuster-Gossler K, Cordes R, Gossler A. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc Natl Acad Sci USA 2007 ; 104 : 537-542. [CrossRef] [Google Scholar]
  25. Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods 1998 ; 14 : 381-392. [CrossRef] [PubMed] [Google Scholar]
  26. Vasyutina E, Lenhard DC, Wende H, et al. RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. Proc Natl Acad Sci USA 2007 ; 104 : 4443-4448. [CrossRef] [Google Scholar]
  27. Seale P, Sabourin LA, Girgis-Gabardo A, et al. Pax7 is required for the specification of myogenic satellite cells. Cell 2000 ; 102 : 777-786. [CrossRef] [PubMed] [Google Scholar]
  28. Relaix F, Rocancourt D, Mansouri A, Buckingham M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 2005 ; 435 : 948-953. [CrossRef] [PubMed] [Google Scholar]
  29. Tedesco FS, Dellavalle A, Diaz-Manera J, et al. Repairing skeletal muscle : regenerative potential of skeletal muscle stem cells. J Clin Invest 2010 ; 120 : 9-11. [Google Scholar]
  30. Buckingham M, Montarras D. Skeletal muscle stem cells. Curr Opin Genet Dev 2008 ; 18 : 330-336. [CrossRef] [PubMed] [Google Scholar]
  31. Conboy IM, Rando TA. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 2002 ; 3 : 397-409. [CrossRef] [PubMed] [Google Scholar]
  32. Kitamoto T, Hanaoka K. Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells 2010 ; 28 : 2205-2216. [CrossRef] [PubMed] [Google Scholar]
  33. Conboy IM, Rando TA. Aging, stem cells and tissue regeneration : lessons from muscle. Cell Cycle 2005 ; 4 : 407-410. [CrossRef] [PubMed] [Google Scholar]
  34. Conboy IM, Conboy MJ, Smythe GM, Rando TA. Notch-mediated restoration of regenerative potential to aged muscle. Science 2003 ; 302 : 1575-1577. [CrossRef] [PubMed] [Google Scholar]
  35. Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005 ; 433 : 760-764. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.